Skip to main content

Advertisement

Log in

A review of controls on lava lake level: insights from Halema‘uma‘u Crater, Kīlauea Volcano

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The height of the lava column is a fundamental measure of open-vent volcanic activity, but little continuous long-term data exist to understand this parameter. The recent (2008–2018) lava lake activity at the summit of Kīlauea Volcano provides an opportunity to track and understand the processes that control lava level over timescales ranging from minutes to years. We review recently published data as well as analyze the long-term record of lava level at Kīlauea’s summit during 2009–2017. Longer timescale fluctuations, over days to months, have a strong positive linear correlation with ground deformation, suggesting they reflect pressure changes in the summit magma reservoir. Shorter timescale fluctuations, over minutes to hours, have an inverse relationship with spattering (i.e., outgassing) intensity at the lake surface—increased outgassing lowers the lake level and vice versa. Our analysis of the long-term lava level data thus confirms that lava level at Halema‘uma‘u is controlled by these two types of processes: (1) those related to magma reservoir pressure changes (such as magma supply rate) and (2) shallow outgassing fluctuations (such as gas pistoning). Frequency filtering can isolate pressure- and outgassing-driven components of lava level change. Time series analysis indicates that there was no large, persistent periodicity in the lava level; a minor fortnightly oscillation might be related to Earth tides but was not continuously present. The correlation between lava level and deformation of the summit indicates that the lava lake acts as a reliable “piezometer”; tracking lava level over time may thus provide an indication of flank eruptive potential. We show that long-term interdisciplinary monitoring is necessary to discriminate the processes that control lava level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Anderson SW, LeWinter AL, Finnegan DC, Patrick MR, Orr TR (2014) Repeat terrestrial LiDAR scanning at Kīlauea Volcano reveals basaltic lava lake surface slope, structure and micro-pistoning. Abstract V43A-4851 at AGU fall meeting, December 2014

  • Anderson K, Poland M, Johnson J, Miklius A (2015) Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system. In: Carey R, Poland M, Cayol V, Weis D (eds) Hawaiian volcanism: from source to surface, American Geophysical Union Geophysical Monograph, vol 208. Wiley, Hoboken, pp 229–250

    Google Scholar 

  • Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012. Earth Planet Sci Lett 447:161–171

  • Barberi F, Cheminee J-L, Varet J (1973) Long-lived lava lakes of Erta Ale volcano. Rev Géogr Phys Géol Dyn 15:347–352

    Google Scholar 

  • Barnie T, Oppenheimer C, Pagli C (2016) Does the lava lake of Erta `Ale volcano respond to regional magmatic and tectonic events? An investigation using Earth Observation data. In: Wright, T. J., Ayele, A., Ferguson, D. J., Kidane, T. & Vye-Brown, C. (eds) Magmatic Rifting and Active Volcanism. Geological Society, London, Special Publications, 420. https://doi.org/10.1144/SP420.15

  • Bawden GW, Patrick MR, Orr TR, Howle J, Bond S, Thelen WA, Kauahikaua JP, Angeli K, Pelkie A, Molnia BF (2013) 4D micro-piston motion of Halema‘uma‘u lava lake surface measured with ground-based tripod LiDAR, Kīlauea, Hawaii. Abstract V53F-07, American Geophysical Union Fall Meeting, San Francisco, CA, Dec. 2013

  • Brown EW (1925) Tidal oscillations in Halemaumau. Am J Sci 9(5th ser):95–112

    Article  Google Scholar 

  • Burgi P-Y, Darrah TH, Tedesco D, Eymold WK (2014) Dynamics of the Mount Nyiragongo lava lake. J Geophys Res Solid Earth 119:4106–4122. https://doi.org/10.1002/2013JB010895

    Article  Google Scholar 

  • Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton M, Andronico D (2005) Chronology and complex volcanic processes during the 2002-2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J Geophys Res 110:B02201. https://doi.org/10.1029/2004JB003129

    Article  Google Scholar 

  • Calvari S, Lodato L, Steffke A, Cristaldi A, Harris AJL, Spampinato L, Boschi E (2010) The 2007 Stromboli eruption: event chronology and effusion rates using thermal infrared data. J Geophys Res 115:B0421. https://doi.org/10.1029/2009JB006478

    Article  Google Scholar 

  • Carbone D, Poland MP, Patrick MR, Orr TR (2013) Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i. Earth Planet Sci Lett 376:178–185

    Article  Google Scholar 

  • Cervelli PF, Miklius A (2003) The shallow magmatic system of Kīlauea Volcano. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō–Kupaianaha Eruption of Kīlauea Volcano, Hawai‘i: the first 20 years. US Geological Survey Professional Paper 1676:149–163

  • Connor CB, Stoiber RE, Malinconico LL (1988) Variations in sulfur dioxide emissions related to earth tides, Halemaumau Crater, Kīlauea Volcano, Hawaii. J Geophys Res 93:14867–14871

    Article  Google Scholar 

  • Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D (2016) Birth of a lava lake: Nyamulagira volcano 2011-2015. Bull Volcanol 78:20

    Article  Google Scholar 

  • Davies AG (2003) Temperature, age and crust thickness distributions of Loki Patera on Io from Galileo NIMS data: implications for resurfacing mechanism. Geophys Res Lett 30:2133. https://doi.org/10.1029/2003GL018371

    Article  Google Scholar 

  • Denlinger RP (1997) A dynamic balance between magma supply and eruption rate at Kilauea Volcano, Hawai‘i. J Geophys Res 102:18091–18100

    Article  Google Scholar 

  • Dzurisin D (1980) Influence of fortnightly earth tides at Kīlauea Volcano, Hawaii. Geophys Res Lett 7:925–928

    Article  Google Scholar 

  • Eaton JP, Murata KJ (1960) How volcanoes grow. Science 132:925–938

    Article  Google Scholar 

  • Edmonds M, Gerlach TM (2007) Vapor segregation and loss in basaltic melts. Geology 35:751–754

    Article  Google Scholar 

  • Elias T, Sutton AJ (2017) Volcanic air pollution hazards in Hawaii. U.S. Geological Survey Fact Sheet 2017–3017, 4 p. https://doi.org/10.3133/fs20173017

  • Elias T, Kern C, Horton KA, Sutton AJ, Garbeil H (2018) Measuring SO2 emission rates at Kīlauea Volcano, Hawaii, using an array of upward-looking UV spectrometers, 2014-2017. Front Earth Sci 6:214. https://doi.org/10.3389/feart.2018.00214

    Article  Google Scholar 

  • Ellis W (1825) Narrative of a tour through Hawai‘i, or, Owhyhee. H. Fisher, Son, and P. Jackson, London, p. 264. (Simultaneously published in Boston by Crocker & Brewster. Reprinted 1826, 1827 in London by Fisher and Jackson; reprinted 1917 by the Hawaiian Gazette Co., Ltd., Honolulu; reprinted 2004 by Mutual Publishing, Honolulu; 1827 London ed. reprinted 1963 as Journal of William Ellis by the Advertiser Publishing Co., Ltd., Honolulu, 342

  • Flynn LP, Mouginis-Mark PJ, Gradie JC, Lucey PG (1993) Radiative temperature measurements at Kupaianaha lava lake, Kilauea Volcano, Hawaii. J Geophys Res 98:6461–6476

    Article  Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Girona T, Huber C, Caudron C (2018) Sensitivity to lunar cycles prior to the 2007 eruption of Ruapehu volcano. Sci Rep 8:1476

    Article  Google Scholar 

  • Global Volcanism Program (1977) Report on Nyiragongo (DR Congo). In: Squires D (ed) Natural Science Event Bulletin, vol 2. Smithsonian Institution, Washington DC, p 3. https://doi.org/10.5479/si.GVP.NSEB197703-223030

    Chapter  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Hamaguchi H, Nishimura T, Zana N (1992) Process of the 1977 Nyiragongo eruption inferred from the analysis of long-period earthquakes and volcanic tremors. Tectonophysics 209:241–254

    Article  Google Scholar 

  • Harris AJL, Carniel R, Jones J (2005) Identification of variable convective regimes at Erta Ale lava lake. J Volcanol Geotherm Res 142:207–223

    Article  Google Scholar 

  • Heliker C, Mattox TN (2003) The first two decades of the Pu‘u ‘Ō‘ō–Kupaianaha eruption: chronology and selected bibliography. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō–Kupaianaha eruption of Kīlauea Volcano, Hawai‘i: the first 20 years. US Geological Survey Professional Paper 1676:1–27

  • Horton K, Garbeil H, Sutton AJ, Elias T, Businger S (2012) Early monitoring results from the Halema‘uma‘u vog measurement and prediction FLYSPEC array. Extended Abstracts, AGU Chapman Conf. on Hawaiian Volcanoes: From Source to Surface, Waikoloa, HI, Amer. Geophys. Union, TH-34. [Available online at http://hilo.hawaii.edu/~kenhon/HawaiiChapman/documents/1HawaiiChapmanAbstracts.pdf] Accessed 26 Dec 2018

  • Jaggar T (1917) The lava flow from Mauna Loa 1916. Am J Sci XLIII:255–288

    Article  Google Scholar 

  • Jaggar T (1920) Seismometric investigation of the Hawaiian lava column. Bull Seismol Soc Am X:155–275

    Google Scholar 

  • Jaggar TA (1947) Origin and development of craters, Geol Soc Am Mem 21. Waverly Press, Baltimore

    Google Scholar 

  • Jaggar TA, Finch RH (1924) The explosive eruption of Kīlauea in Hawaii, 1924. Am J Sci 5(9):353–374

    Article  Google Scholar 

  • Jaggar T, Finch RH, Emerson OH (1924) The lava tide, seasonal tilt, and the volcanic cycle. Mon Weather Rev 52:142–145

    Article  Google Scholar 

  • Johanson IA, Miklius A, Poland MP (2016) Principle component analysis to separate deformation signals from multiple sources during a 2015 intrusive sequence at Kilauea Volcano. AGU Fall Meeting, San Francisco, abstract G14A-02

  • Johnson JB, Watson LM, Palma JL, Dunham EM, Anderson JF (2018) Forecasting the eruption of an open-vent volcano using resonant infrasound tones. Geophys Res Lett 45:2213–2220

    Article  Google Scholar 

  • Jones LK, Kyle PR, Oppenheimer C, Frechette JD, Okal MH (2015) Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica. J Volcanol Geotherm Res 295:43–54

    Article  Google Scholar 

  • Kern C, Sutton J, Elias T, Lee L, Kamibayashi K, Antolik L, Werner C (2015) An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano’s summit overlook. J Volcanol Geotherm Res 300:81–94. https://doi.org/10.1016/j.jvolgeores.2014.12.004

    Article  Google Scholar 

  • Kinoshita WT, Koyanagi RY, Wright TL, Fisk RS (1969) Kīlauea volcano: the 1967-68 summit eruption. Science 166(3904):459–468

    Article  Google Scholar 

  • Le Guern F, Carbonnelle J, Tazieff H (1979) Erta `Ale lava lake: heat and gas transfer to the atmosphere. J Volcanol Geotherm Res 6:27–48

    Article  Google Scholar 

  • Le Guern F (1987) Mechanism of energy transfer in the lava lake of Niragongo (Zaire), 1959-1977. J Volcanol Geotherm Res 31:17–31

    Article  Google Scholar 

  • Lopes RMC, Gregg TKP, Harris A, Radebaugh J, Byrne P, Kerber L, Mouginis-Mark P (2018) Extraterrestrial lava lakes. J Volcanol Geotherm Res 366:74–95

    Article  Google Scholar 

  • McNutt SR, Beavan RJ (1981) Volcanic earthquakes at Pavlof Volcano correlated with the solid earth tide. Nature 294(5842):615–618

    Article  Google Scholar 

  • Nadeau PA, Werner CA, Waite GP, Carn SA, Brewer ID, Elias T, Sutton AJ, Kern C (2015) Using SO2 camera imagery and seismicity to examine degassing and gas accumulation at Kīlauea Volcano, May 2010. J Volcanol Geotherm Res 300:70–80. https://doi.org/10.1016/j.jvolgeores.2014.12.005

    Article  Google Scholar 

  • Neal CA, Brantley SR, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang JC, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson IA, Kamibayashi K, Kauahikaua J, Lee RL, Pekalib S, Miklius A, Million W, Moniz CJ, Nadeau PA, Okubo P, Parcheta C, Patrick MP, Shiro B, Swanson DA, Tollett W, Trusdell F, Younger EF, Zoeller MH, Montgomery-Brown EK, Anderson KR, Poland MP, Ball J, Bard J, Coombs M, Dietterich HR, Kern C, Thelen WA, Cervelli PF, Orr T, Houghton BF, Gansecki C, Hazlett R, Lundgren P, Diefenbach AK, Lerner AH, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G (2018) The 2018 rift eruption and summit collapse of Kilauea Volcano. Science:eaav7046. https://doi.org/10.1126/science.aav7046

  • Oppenheimer C, Francis P (1997) Remote sensing of heat, lava and fumarole emissions from Erta `ale volcano, Ethiopia. Int J Remote Sens 18:1661–1692. https://doi.org/10.1080/014311697218043

    Article  Google Scholar 

  • Oppenheimer C, Francis P (1998) Implications of longeval lava lakes for geomorphological and plutonic processes at Erta `Ale volcano, Afar. J Volcanol Geotherm Res 80:101–111

    Article  Google Scholar 

  • Oppenheimer C, Lomakina AS, Kyle PR, Kingsbury NC, Boichu M (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 199:173–184

    Google Scholar 

  • Orr TR (2014) The June–July 2007 collapse and refilling of the Pu‘u ‘Ō‘ō Crater, Kīlauea Volcano, Hawai‘i. U.S. Geological Survey Scientific Investigations Report 2014-5124. https://doi.org/10.3133/sir20145124

  • Orr TR, Rea JC (2012) Time-lapse camera observations of gas piston activity at Pu‘u ‘Ō‘ō, Kīlauea volcano, Hawai‘i. Bull Volcanol 74:2353–2362. https://doi.org/10.1007/s00445-012-0667-0

    Article  Google Scholar 

  • Orr TR, Thelen WA, Patrick MR, Swanson DA, Wilson DC (2013) Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawai‘i. Geology 41:207–210. https://doi.org/10.1130/G33564.1

    Article  Google Scholar 

  • Orr TR, Houghton BF, Taddeucci J, Del Bello E, Scarlato P, Patrick MR (2014) The bubble’s wake: localized rebound of Kīlauea’s summit lava lake following minor bubble bursts. Abstract V41D-05 presented at AGU fall meeting, Dec 2014

  • Orr T, Poland MP, Patrick MR, Thelen WA, Sutton AJ, Elias T, Thornber CR, Parcheta C, Wooten KM (2015) Kīlauea’s 5-9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu‘u ‘Ō‘ō. In: Carey R, Poland M, Cayol V, Weis D (eds) Hawaiian volcanism: from source to surface, American Geophysical Union Geophysical Monograph, vol 208. Wiley, Hoboken, pp 393–420

    Google Scholar 

  • Orr TR, Ulrich GE, Heliker C, DeSmither LG, Hoffman JP (2018) The Pu‘u ‘Ō‘ō eruption of Kīlauea Volcano, Hawai‘i—episode 21 through early episode 48, June 1984–April 1987. U.S. Geological Survey Scientific Investigations Report 2018–5109, 107 p. https://doi.org/10.3133/sir20185109

  • Palma JL, Calder ES, Basualto D, Blake S, Rothery DA (2008) Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J Geophys Res Solid Earth 113:B1020. https://doi.org/10.1029/2008JB005577

    Article  Google Scholar 

  • Patrick MR, Orr T, Wilson D, Dow D, Freeman R (2011a) Cyclic spattering, seismic tremor, and surface fluctuation within a perched lava channel, Kīlauea Volcano. Bull Volcanol 73:639–653

    Article  Google Scholar 

  • Patrick MR, Wilson D, Fee D, Orr T, Swanson D (2011b) Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i. Bull Volcanol 73:1179–1186

    Article  Google Scholar 

  • Patrick MR, Orr T, Sutton AJ, Elias T, Swanson D (2013) The first five years of Kīlauea’s summit eruption in Halema‘uma‘u, 2008–2013. U.S. Geological Survey Fact Sheet 2013–3116

  • Patrick M, Orr T, Antolik L, Lee L, Kamibayashi K (2014) Continuous monitoring of Hawaiian volcanoes with thermal cameras. J Appl Volcanol 3:1

    Article  Google Scholar 

  • Patrick MR, Anderson KR, Poland MP, Orr T, Swanson D (2015a) Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43:831–834. https://doi.org/10.1130/G36896.1

    Article  Google Scholar 

  • Patrick MR, Orr T, Lee L, Moniz C (2015b) A multipurpose camera system for monitoring Kīlauea Volcano, Hawai‘i. U.S. Geological Survey Techniques and Methods, book 13, chap. A2. http://pubs.usgs.gov/tm/13/a2/

  • Patrick MR, Orr T, Sutton AJ, Lev E, Fee D (2016a) Shallowly driven fluctuations in lava lake outgassing, Kīlauea Volcano, Hawai‘i. Earth Planet Sci Lett 433:326–338. https://doi.org/10.1016/j.epsl.2015.10.052

    Article  Google Scholar 

  • Patrick MR, Orr T, Swanson DA, Lev E (2016b) Shallow and deep controls on lava lake surface motion at Kīlauea Volcano. J Volcanol Geotherm Res 328:247–261. https://doi.org/10.1016/j.jvolgeores.2016.11.010

    Article  Google Scholar 

  • Patrick MR, Orr T, Fisher G, Trusdell F, Kauahikaua J (2017) Thermal mapping of a pahoehoe lava flow, Kīlauea Volcano. J Volcanol Geotherm Res 332:71–87. https://doi.org/10.1016/j.jvolgeores.2016.12.007

    Article  Google Scholar 

  • Patrick MR, Orr T, Swanson D, Elias T, Shiro B (2018) Lava lake activity at the summit of Kīlauea Volcano in 2016. U.S. Geological Survey Scientific Investigations Report 2018–5008, 58 p. https://doi.org/10.3133/sir20185008

  • Patrick MR, Orr T (2018) Operational tracking of lava lake surface motion, Kīlauea Volcano. U.S. Geological Survey Techniques and Methods 13-A3. https://doi.org/10.3133/tm13A3

  • Patrick M, Orr T, Anderson K, Swanson D (2019) Eruptions in sync: improved constraints on Kīlauea Volcano’s hydraulic connection. Earth Planet Sci Lett 507:50–61

    Article  Google Scholar 

  • Peters N, Oppenheimer C, Killingsworth DR, Frechette J, Kyle P (2014) Correlation of cycles in lava lake motion and degassing at Erebus Volcano, Antarctica. Geochem Geophys Geosyst 15:3244–3257. https://doi.org/10.1002/2014GC005399

    Article  Google Scholar 

  • Peters NJ, Oppenheimer C, Brennan P, Lokk LB, Ash M, Kyle P (2018) Radar altimetry as a robust tool for monitoring the active lava lake at Erebus Volcano, Antarctica. Geophys Res Lett 45:8897–8904. https://doi.org/10.1029/2018GL079177

    Article  Google Scholar 

  • Poland MP, Miklius AM, Sutton AJ, Thornber CR (2012) A mantle-driven surge in magma supply to Kīlauea Volcano during 2003-2007. Nat Geosci 5:295–300

    Article  Google Scholar 

  • Poland M, Carbone D (2016) Insights into shallow magmatic processes at Kīlauea Volcano, Hawai‘i, from a multiyear continuous gravity time series. J Geophys Res Solid Earth 121:5477–5492

    Article  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage and transport at shield-stage Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. U.S. Geological Survey Professional Paper 1801:179–234

  • Poland M, Orr TR, Kauahikaua JP, Brantley SR, Babb JL, Patrick MR, Neal CA, Anderson KR, Antolik L, Burgess M, Elias T, Fuke S, Fukunaga P, Johanson IA, Kagimoto M, Kamibayashi K, Lee L, Miklius A, Million W, Moniz C, Okubo PG, Sutton AJ, Takahashi TJ, Thelen WA, Tollett W, Trusdell FA (2016) The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: disaster avoided and lessons learned. GSA Today 26:4–10

    Article  Google Scholar 

  • Poland MP, Carbone D (2018) Continuous gravity and tilt reveal anomalous pressure and density changes associated with gas pistoning within the summit lava lake of Kīlauea Volcano, Hawai‘i. Geophys Res Lett 45:2319–2327. https://doi.org/10.1002/2017GL076936

    Article  Google Scholar 

  • Post VEA, von Asmuth JR (2013) Review: hydraulic head measurements—new technologies, classic pitfalls. Hydrogeol J 21:737–750

    Article  Google Scholar 

  • Richardson JP, Waite GP, Palma JL (2014) Varying seismic-acoustic properties of the fluctuating lava lake at Villarrica volcano, Chile. J Geophys Res Solid Earth 119:5560–5573. https://doi.org/10.1002/2014JB011002

    Article  Google Scholar 

  • Ripepe M, Delle Donne D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P (2015) Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nat Commun 6:6998. https://doi.org/10.1038/ncomms7998

    Article  Google Scholar 

  • Ripepe M, Pistolesi M, Coppola D, Delle Donne D, Genco R, Lacanna G, Laiolo M, Marchetti E, Ulivieri G, Valade S (2017) Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci Rep 7:3885

    Article  Google Scholar 

  • Rowland SK, Munro DC (1993) The 1919-1920 eruption of Mauna Iki, Kīlauea: chronology, geologic mapping and magma transport mechanisms. Bull Volcanol 55:190–203

    Article  Google Scholar 

  • Shimozuru D (1975) Lava lake oscillations and the magma reservoir beneath a volcano. Bull Volcanol 39:570–580

    Article  Google Scholar 

  • Smets B, d’Oreye N, Kervyn M, Kervyn F (2016) Gas piston activity of the Nyiragongo lava lake: first insights from a stereographic time-lapse camera system. J Afr Earth Sci 134:874–887

    Article  Google Scholar 

  • Sottili G, Palladino DM (2012) Tidal modulation of eruptive activity at open-vent volcanoes: evidence from Stromboli, Italy. Terra Nova 24:233–237. https://doi.org/10.1111/j.1365-3121.2012.01059.x

    Article  Google Scholar 

  • Spampinato L, Oppenheimer C, Calvari S, Cannata A, Montalto P (2008) Lava lake surface characterization by thermal imaging: Erta `Ale volcano (Ethiopia). Geochem Geophys Geosyst 9:12. https://doi.org/10.1029/2008GC002164

    Article  Google Scholar 

  • Spampinato L, Ganci G, Hernandez PA, Calvo D, Tedesco D, Perez NM, Calvari S, Del Negro C, Yalire MM (2013) Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J Geophys Res Solid Earth 118:5771–5784. https://doi.org/10.1002/2013JB010520

    Article  Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969–71 Mauna Ulu eruption of Kīlauea volcano, Hawaii. U.S. Geological Survey Professional Paper 1056

  • Swanson DA, Orr T, Patrick MR (2016) Changes in the mass flux of tephra from the lava lake in Overlook crater, Kīlauea Volcano, Hawai‘i. AGU Fall meeting abstract V43A-3122

  • Tazieff H (1977) An exceptional eruption: Mt. Niragongo, Jan. 10th, 1977. Bull Volcanol 40:189–200

    Article  Google Scholar 

  • Tazieff H (1994) Permanent lava lakes: observed facts and induced mechanisms. J Volcanol Geotherm Res 63:3–11

    Article  Google Scholar 

  • Thelen W, Patrick MR (2012) A conceptual model for recent seismicity on Kīlauea’s upper east rift zone. American Geophysical Union Chapman conference, Waikoloa, Hawai‘i, August 20–24, abstract TU-35

  • Tilling RI (1987) Fluctuations in surface height of active lava lakes during the 1972-1974 Mauna Ulu eruption, Kīlauea volcano, Hawaii. J Geophys Res 92:13721–13730

    Article  Google Scholar 

  • Tilling RI, Dvorak JJ (1993) Anatomy of basaltic volcano. Nature 363:125–133

    Article  Google Scholar 

  • Tilling RI, Kauahikaua JP, Brantley SR, Neal CA (2014) The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism. In: Poland MP, Takahashi J, Landowski CM (eds) Characteristics of Hawaiian volcanoes. U.S. Geological Survey Professional Paper 1801:1–64

  • Valade S, Lacanna G, Coppola D, Laiolo M, Pistolesi M, Delle Donne D, Genco R, Marchetti E, Ulivieri G, Allocca C, Cigolini C, Nishimura T, Poggi P, Ripepe M (2016) Tracking dynamics of magma migration in open-conduit systems. Bull Volcanol 78:78. https://doi.org/10.1007/s00445-016-1072-x

    Article  Google Scholar 

  • Valade S, Ripepe M, Giuffrida G, Karume K, Tedesco D (2018) Dynamics of Mount Nyiragongo lava lake inferred from thermal imaging and infrasound array. Earth Planet Sci Lett 500:192–204

    Article  Google Scholar 

  • Vergniolle S, Jaupart C (1990) Dynamics of degassing at Kilauea Volcano, Hawaii. J Geophys Res 95:2793–2809

    Article  Google Scholar 

  • Vergniolle S, Bouche E (2016) Gas-driven lava lake fluctuations at Erta `Ale volcano (Ethiopia) revealed by MODIS measurements. Bull Volcanol 78:60. https://doi.org/10.1007/s00445-016-1047-y

    Article  Google Scholar 

  • Wilson D, Elias T, Orr T, Patrick M, Sutton AJ, Swanson D (2008) Small explosion from new vent at Kīlauea’s summit. EOS 89:203

    Article  Google Scholar 

  • Witham F, Llewellin EW (2006) Stability of lava lakes. J Volcanol Geotherm Res 158:321–332

    Article  Google Scholar 

  • Witham F, Woods AW, Gladstone C (2006) An analogue experimental model of depth fluctuations in lava lakes. Bull Volcanol 69:51–56

    Article  Google Scholar 

  • Wright TL, Klein FW (2014) Two hundred years of magma transport and storage at Kīlauea Volcano, Hawai‘i, 1790-2008. US Geological Survey Professional Paper 1806. https://doi.org/10.3133/pp1806

Download references

Acknowledgements

HVO staff assisted in the collection of the data in this review. We thank B. Shiro for assistance with earthquake data and I. Johanson, M. Poland and K. Anderson with discussions of the deformation. We thank T. Eriksen (University of Hawai‘i Manoa), Adam LeWinter and David Finnegan (Cold Regions Research and Engineering Lab), and Gerald Bawden (USGS) for sharing LIDAR measurements of the lake. L. Desmither and C. Parcheta assisted with laser rangefinder measurements of lake level. Reviews by B. Smets, C. Oppenheimer, and K. Anderson improved the manuscript. We thank B. Smets for added insight regarding Nyiragongo precursors and the importance of rapid lava level rise. This work was supported by the U.S. Geological Survey Volcano Science Center. The use of brand names is for information use only and does not imply endorsement by the U.S. Geological Survey or federal government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Patrick.

Additional information

Editorial responsibility: M.R. James

Electronic supplementary material

Additional details on the methodology for lava level measurements, along with additional details on outgassing estimates.

ESM 1

(DOCX 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, M., Swanson, D. & Orr, T. A review of controls on lava lake level: insights from Halema‘uma‘u Crater, Kīlauea Volcano. Bull Volcanol 81, 13 (2019). https://doi.org/10.1007/s00445-019-1268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1268-y

Keywords

Navigation