Skip to main content
Log in

Characteristics and consequences of lava dome collapse at Ruawahia, Taupo Volcanic Zone, New Zealand

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The eruption of large, rhyolitic lava domes may be accompanied by the formation of large block and ash flows. This may be linked to the style of dome extrusion—whether it forms a series of individual lobes, flows or spines (exogenous) or grows by internal inflation (endogenous). Lava domes can transition from one extrusive style to another as a result of a change in extrusion rate or the formation of facilitating structures such as shear zones. How this change can affect large rhyolitic lava domes is unclear as there are few historically recorded rhyolitic dome eruptions. Here, we present structures at Ruawahia lava dome (a well exposed ~ 700-year-old lava dome), how these facilitating structures enable exogenous extrusion at Ruawahia dome, and link this to collapse episodes along the fringes of the dome during growth. Ruawahia dome is part of the Tarawera dome complex, a chain of domes running parallel to regional structures across the Okataina caldera complex in the Taupo Volcanic Zone, New Zealand. Ruawahia dome consists of (1) a high porosity (44–52%), crystalline (65% DRE), locally brecciated carapace facies with rare bread-crusting and ‘ropey’ flow textures; (2) a core facies of dominantly low to moderate porosity (20–25%) with elongate vesicles that mark weak flow bands; and (3) thin (< 5 m thick) interior breccia zones. Flow bands at Ruawahia are complex and do not fit with hypothesised flow band orientations attributed to a single phase of exogenous or endogenous dome growth. Inward dipping flow bands on ramp structures on the flow surface suggest a flow-like (coulée) morphology; however, steeply dipping and multidirectional flow bands on the edges of the dome challenge this hypothesis. Widespread block and ash flow deposits have been sourced from the leading dome fronts to the NW and SE; these collapse events left behind inflated and bread-crusted outcrops on these dome fronts, suggesting syn-eruption collapse events that led to expansion of a hot, pressurised dome interior. We consider Ruawahia erupted from multiple, aligned vents, either as lobes confined within the crater of a pyroclastic cone formed during the initial Plinian phase of the eruption or those able to flow down the cone flank. The confined lobes formed steep internal breccia zones as individual dome lobes extruded past one another. Lobes that were able to overcome the pyroclastic cone rim (or where the vent was outside the crater) were able to flow down the flanks as bulldozing, thickening flows with dominantly ductile interiors and brittle exteriors; these flows collapsed as the front thickened, possibly due to a decrease in gradient, producing widespread block and ash flows. The removal of lava associated with collapse generated a decompression event which resulted in fragmentation, cracking and vesiculation in the hot interior of the lava flows. These events left behind a re-vesiculated and bread-crusted lava flow front and produced block and ash flows with abundant breadcrust bombs that reached the base of Tarawera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acocella V, Spinks KD, Cole JW, Nicol A (2003) Oblique back arc rifting of Taupo Volcanic Zone, New Zealand. Tectonics 22(4):1–18

    Article  Google Scholar 

  • Anderson SW, Fink JH (1989) Hydrogen isotope evidence for extrusion mechanisms of the Mount St. Helens lava dome. Nature 341(October):521–523

    Article  Google Scholar 

  • Ashwell PA, Kennedy BM, Gravley DM, von Aulock FW, Cole JW (2013) Insights into caldera and regional structures and magma body distribution from lava domes at Rotorua Caldera, New Zealand. J Volcanol Geotherm Res 258:187–202

    Article  Google Scholar 

  • Ashwell PA, Kendrick JE, Lavallée Y, Kennedy BM, Hess K-U, von Aulock FW, Wadsworth FB, Vasseur J, Dingwell DB (2015) Permeability of compacting porous lavas. J Geophys Res Solid Earth 120(3):1605–1622

    Article  Google Scholar 

  • Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77:102

    Article  Google Scholar 

  • Bibby HM, Caldwell TG, Davey F, Webb T (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geotherm Res 68(1–3):29–58

    Article  Google Scholar 

  • Bull KF, Anderson SW, Diefenbach AK, Wessels RL, Henton SM (2012) Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:334–348

    Article  Google Scholar 

  • Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. Mem Geol Soc Lond 21:173–190

    Article  Google Scholar 

  • Calder ES, Lavallée Y, Kendrick JE, Berstein B (2015) Lava dome eruptions. In: Sigurdsson H et al (eds) Encyclopedia of Volcanoes, 2nd edn. Academic Press, Sand Diego, pp 343–362

    Chapter  Google Scholar 

  • Caricchi L, Pommier A, Pistone M, Castro JM, Burgisser A, Pergugini D (2011) Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts. Bull Volcanol 73(9):1245–1257

    Article  Google Scholar 

  • Carn SA, Watts RB, Thompson G, Norton GE (2004) Anatomy of a lava dome collapse: the 20 March 2000 event at Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 131(3–4):241–264

    Article  Google Scholar 

  • Carr BB, Clarke AB, Vanderkluysen L (2016) The 2006 lava dome eruption of Merapi Volcano (Indonesia); detailed analysis using MODIS TIR. J Volcanol Geotherm Res 311:60–71

    Article  Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions modern and ancient: a geological approach to processes, products and successions. Unwin Hyman, London, p 528

    Google Scholar 

  • Cashman KV, Taggart JE (1983) Petrologic monitoring of 1981 and 1982 eruptive products from Mount St. Helens. Science 221(4618):1385–1387

    Article  Google Scholar 

  • Cashman KV, Thornber CR, Pallister, JS (2008) From dome to dust: shallow crystallization and fragmentation of conduit magma during the 2004–2006 dome extrusion of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano Rekindled: The Renewed Eruption of Mt St Helens, 2004–2006. USGS, pp 387–413

  • Castro JM, Cashman KV (1999) Constraints on rheology of obsidian lavas based on mesoscopic folds. J Struct Geol 21:807–819

    Article  Google Scholar 

  • Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the Big Obsidian Flow, Newberry Volcano. J Volcanol Geotherm Res 114:313–330

  • Castro JM, Burgisser A, Schipper CI, Mancini S (2012a) Mechanisms of bubble coalescence in silicic magmas. Bull Volcanol 74(10):2339–2352

    Article  Google Scholar 

  • Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012b) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333–334:63–69

    Article  Google Scholar 

  • Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: textural and deltaD-H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405(November):52–61

    Article  Google Scholar 

  • Cole JW (1970a) Petrography of the rhyolite lavas of Tarawera Volcanic Complex. N Z J Geol Geophys 13(4):903–924

    Article  Google Scholar 

  • Cole JW (1970b) Structure and eruptive history of the Tarawera Volcanic Complex. N Z J Geol Geophys 13(4):881–902

    Google Scholar 

  • Cole JW (1990) Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 52:445–459

    Article  Google Scholar 

  • Cole JW, Lewis KB (1981) Evolution of the Taupo-Hikurangi subduction system. Tectonophysics 72:1–21

    Article  Google Scholar 

  • Cole JW, Spinks KD, Deering CD, Nairn IA, Leonard GS (2010) Volcanic and structural evolution of the Okataina Volcanic Centre; dominantly silicic volcanism associated with the Taupo Rift, New Zealand. J Volcanol Geotherm Res 190(1–2):123–135

    Article  Google Scholar 

  • Dennen RL, Bursik MI, Roche O (2014) Dome collapse mechanisms and block-and-ash flow emplacement dynamics inferred from deposit and impact mark analysis, Mono Craters, CA. J Volcanol Geotherm Res 276:1–9

    Article  Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273(5278):1054–1055

    Article  Google Scholar 

  • Donovan AR, Oppenheimer C, Bravo M (2012) Contested boundaries: delineating the “safe zone” on Montserrat. Appl Geogr 35(1–2):508–514

    Article  Google Scholar 

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:281–306

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Article  Google Scholar 

  • Farquharson JI, James MR, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011-2012 lava flowfield at Cordon-Caulle, Chile. J Volcanol Geotherm Res 304:336–348

    Article  Google Scholar 

  • Fink JH, Anderson SW (2000) Lava domes and coulees. In: Sigurdsson H et al (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 307–319

    Google Scholar 

  • Fink JH, Kieffer SW (1993) Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes. Nature 363:612–615

    Article  Google Scholar 

  • Fink JH, Manley CR (1987) Origin of pumiceous and glassy textures in rhyolite flows and domes. Spec Pap Geol Soc Am 212:77–88

    Google Scholar 

  • Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano, California. Geology 11:458–461

    Article  Google Scholar 

  • Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the Mount St Helens lava dome. Nature 348(6300):435–437

    Article  Google Scholar 

  • Fink JH, Anderson SW, Manley CR (1992) Textural constraints on effusive silicic volcanism: beyond the permeable foam model. J Geophys Res 97(B6):9073–9083

    Article  Google Scholar 

  • Gardner JE (2007) Bubble coalescence in rhyolitic melts during decompression from high pressure. J Volcanol Geotherm Res 166(3–4):161–176

    Article  Google Scholar 

  • Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218

    Article  Google Scholar 

  • Gardner JE, Hilton M, Carroll MR (2000) Bubble growth in highly viscous silicate melts during continuous decompression from high pressure. Geochim Cosmochim Acta 64(8):1473–1483

    Article  Google Scholar 

  • Griffiths R, Fink J (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:667–702

  • Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: a model for the growth of silicic lava domes. J Fluid Mech 347:13–36

    Article  Google Scholar 

  • Hale AJ (2008) Lava dome growth and evolution with an independently deformable talus. Geophys J Int 174(1):391–417

    Article  Google Scholar 

  • Hale AJ, Wadge G (2008) The transition from endogenous to exogenous growth of lava domes with the development of shear bands. J Volcanol Geotherm Res 171(3–4):237–257

    Article  Google Scholar 

  • Hanenkamp E (2011) Decoupling processes in block-and-ash flows: field evidence and analogue modelling. PhD thesis, University of Canterbury

  • Heap MJ, Russell JK, Kennedy LA (2016) Mechanical behaviour of dacite from Mount St. Helens (USA): a link between porosity and lava dome extrusion mechanism (dome or spine)? J Volcanol Geotherm Res 328:159–177

    Article  Google Scholar 

  • Herd RA, Edmonds M, Bass VA (2005) Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12–13 July 2003. J Volcanol Geotherm Res 148(3–4):234–252

    Article  Google Scholar 

  • Hornby AJ, Kendrick JE, Lamb OD, Hirose T, De Angelis S, von Aulock FW, Umakoshi K, Miwa T, De Angelis SH, Wadsworth FB, Hess K-U, Dingwell DB, Lavallee Y (2015) Spine growth and seismogenic faulting at Mt. Unzen, Japan. J Geophys Res Solid Earth 120(6):4034–4054

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey RJ (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137(1–3):1–14

    Article  Google Scholar 

  • Jaupart C, Allegre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429

    Article  Google Scholar 

  • Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116(1–2):151–160

    Article  Google Scholar 

  • Kendrick JE, Lavallée Y, Ferk A, Perugini D, Leonhardt R, Dingwell DB (2012) Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004–2008 eruption. J Struct Geol 38:61–76

    Article  Google Scholar 

  • Kendrick JE, Lavallée Y, Hess KU, Heap MJ, Gaunt HE, Meredith PG, Dingwell DB (2013) Tracking the permeable porous network during strain-dependent magmatic flow. J Volcanol Geotherm Res 260:117–126

    Article  Google Scholar 

  • Kendrick JE, Lavallée Y, Hirose T, Di Toro G, Hornby AJ, De Angelis S, Dingwell DB (2014) Volcanic drumbeat seismicity caused by stick-slip motion and magmatic frictional melting. Nat Geosci 7(6):438–442

    Article  Google Scholar 

  • Kennedy BM, Jellinek AM, Russell JK, Nichols ARL, Vigouroux N (2010) Time-and temperature-dependent conduit wall porosity: a key control on degassing and explosivity at Tarawera volcano, New Zealand. Earth Planet Sci Lett 299(1–2):126–137

    Article  Google Scholar 

  • Kennedy BM, Wadsworth FB, Vasseur J, Schipper CI, Jellinek AM, von Aulock FW, Hess K-U, Russell JK, Lavallée Y, Nichols ARL, Dingwell DB (2016) Surface tension driven processes densify and retain permeability in magma and lava. Earth Planet Sci Lett 433:116–124

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Article  Google Scholar 

  • Kushnir ARL, Martel C, Champallier R, Arbaret L (2017) In situ confirmation of permeability development in shearing bubble-bearing melts and implications for volcanic outgassing. Earth Planet Sci Lett 458:315–326

    Article  Google Scholar 

  • Lamb OD, De Angelis S, Umakoshi K, Hornby AJ, Kendrick JE, Lavallée Y (2015) Cyclic fracturing during spine extrusion at Unzen volcano, Japan. Solid Earth Discuss 7(3):2109–2149

    Article  Google Scholar 

  • Latutrie B, Harris A, Médard E, Gurioli L (2017) Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France). Bull Volcanol 79(4):21

    Google Scholar 

  • Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 8:715–718

    Article  Google Scholar 

  • Lavallée Y, Meredith PG, Dingwell DB, Hess K-U, Wassermann J, Cordonnier B, Gerik A, Kruhl JH (2008) Seismogenic lavas and explosive eruption forecasting. Nature 453(7194):507–510

    Article  Google Scholar 

  • Lavallée Y, Mitchell TM, Heap MJ, Vasseur J, Hess K-U, Hirose T, Dingwell DB (2012) Experimental generation of volcanic pseudotachylytes: constraining rheology. J Struct Geol 38:222–233

    Article  Google Scholar 

  • Lavallée Y, Benson PM, Heap MJ, Hess K-U, Flaws A, Schillinger B, Meredith PG, Dingwell DB (2013) Reconstructing magma failure and the degassing network of dome-building eruptions. Geology 41(4):515–518

    Article  Google Scholar 

  • Leonard GS, Cole JW, Nairn IA, Self S (2002) Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand. J Volcanol Geotherm Res 115(3–4):461–486

    Article  Google Scholar 

  • Leonard GS, Begg JG, Wilson CJN (2010) Geology of the Rotorua Area, Institute of Geological and Nuclear Sciences 1:250000 geological map 5. GNS Science, Lower Hutt

    Google Scholar 

  • Loughlin SC, Luckett R, Ryan G, Christopher T, Hards V, De Angelis S (2010) An overview of lava dome evolution, dome collapse and cyclicity at Soufriere Hills Volcano, Montserrat, 2005-2007. Geophys Res Lett 37(9):4–9

    Google Scholar 

  • Manley CR (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Volcanol Geotherm Res 53(1–4):27–46

    Article  Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15(6):549–552

    Article  Google Scholar 

  • Miyabuchi Y (1999) Deposits associated with the 1990-1995 eruption of Unzen volcano, Japan. J Volcanol Geotherm Res 89(1–4):139–158

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218(3–4):521–537

    Article  Google Scholar 

  • Mueller SP, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67(6):526–538

    Article  Google Scholar 

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36(5):399

    Article  Google Scholar 

  • Mueller SP, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203(3–4):168–174

    Article  Google Scholar 

  • Nairn IA (1979) Rotomahana—Waimangu eruption, 1886: base surge and basalt magma. N Z J Geol Geophys 22(3):363–378

    Article  Google Scholar 

  • Nairn IA, Cole JW (1981) Basalt dikes in the 1886 Tarawera rift. N Z J Geol Geophys 24(5–6):585–592

    Article  Google Scholar 

  • Nairn IA, Kobayashi T, Nakagawa M (1998) The ~10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: part 1. Eruptive processes during regional extension. J Volcanol Geotherm Res 86:19–44

    Article  Google Scholar 

  • Nairn IA, Self S, Cole JW, Leonard GS, Scutter C (2001) Distribution, stratigraphy and history of proximal deposits from the c. AD 1305 Kaharoa eruption of Tarawera volcano, New Zealand. N Z J Geol Geophys 44(3):467–484

    Article  Google Scholar 

  • Nairn IA, Shane P, Cole JW, Leonard GS, Self S, Pearson N (2004) Rhyolite magma processes of the∼ AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand. J Volcanol Geotherm Res 131:265–294

    Article  Google Scholar 

  • Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993 – 1994. Geology 23:157–160

    Article  Google Scholar 

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen volcano. J Volcanol Geotherm Res 89:1–22

    Article  Google Scholar 

  • Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281(3–4):267–274

    Article  Google Scholar 

  • Platz T, Cronin SJ, Cashman KV, Stewart RB, Smith IEM (2007) Transition from effusive to explosive phases in andesite eruptions—a case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geotherm Res 161(1–2):15–34

    Article  Google Scholar 

  • Platz T, Cronin SJ, Procter JN, Neall VE, Foley SF (2012) Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology 136(1):15–30

    Article  Google Scholar 

  • Quane SL, Russell JK, Friedlander EA (2009) Time scales of compaction in volcanic systems. Geology 37(5):471–474

    Article  Google Scholar 

  • Rose WI (1987) Volcanic activity at Santiaguito Volcano 1976-1984. Geol Soc Am Spec Pap 212:17–27

    Google Scholar 

  • Rose WI, Pearson T, Bonis S (1976) Nuee ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala. Bull Volcanol 40(1):23–38

    Article  Google Scholar 

  • Rowland JV, Sibson RH (2001) Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: soft-linked segmentation of a continental rift system. N Z J Geol Geophys 44(2):271–283

    Article  Google Scholar 

  • Ryan GA, Loughlin SC, James MR, Jones LD, Calder ES, Christopher T, Strutt MH, Wadge G (2010) Growth of the lava dome and extrusion rates at Soufrière Hills Volcano, Montserrat, West Indies: 2005-2008. Geophys Res Lett 37(19):L00E08

    Article  Google Scholar 

  • Sahetapy-Engel ST, Harris AJL (2008) Thermal structure and heat loss at the summit crater of an active lava dome. Bull Volcanol 71(1):15–28

    Article  Google Scholar 

  • Sato H, Fujii T, Nakada S (1992) Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature 360(6405):664–666

    Article  Google Scholar 

  • Schauroth J, Wadsworth FB, Kennedy BM, von Aulock FW, Lavallée Y (2016) Conduit margin heating and deformation during the AD1886 basaltic plinian eruption at Tarawera volcano, New Zealand. Bull Volcanol 78(2):14

    Article  Google Scholar 

  • Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69(2):175–187

    Article  Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37

    Article  Google Scholar 

  • Seebeck H, Nicol A (2009) Dike intrusion and displacement accumulation at the intersection of the Okataina Volcanic Centre and Paeroa Fault zone, Taupo Rift, New Zealand. Tectonophysics 475(3–4):575–585

    Article  Google Scholar 

  • Smith JV, Miyake Y, Oikawa T (2001) Interpretation of porosity in dacite lava domes as ductile-brittle failure textures. J Volcanol Geotherm Res 112(1–4):25–35

    Article  Google Scholar 

  • Smith R, Sammonds PR, Kilburn CRJ (2009) Fracturing of volcanic systems: experimental insights into pre-eruptive conditions. Earth Planet Sci Lett 280(1–4):211–219

    Article  Google Scholar 

  • Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nova 12(1):14–20

    Article  Google Scholar 

  • Spieler O, Kennedy BM, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226(1–2):139–148

    Article  Google Scholar 

  • Spinks KD, Acocella V, Cole JW, Bassett K (2005) Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 144(1–4):7–22

    Article  Google Scholar 

  • Stasiuk MV, Barclay J, Carroll MR, Jaupart C (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130

    Article  Google Scholar 

  • Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallisation history of obsidian dome, Inyo Domes, California. Bull Volcanol 51:161–176

    Article  Google Scholar 

  • Tian Y, Shan Y (2011) The diversity of flow structures in felsic dykes. J Geol Soc Lond 168:1001–1011

    Article  Google Scholar 

  • Tuffen H, Dingwell DB (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67(4):370–387

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089

    Article  Google Scholar 

  • Tuffen H, Smith R, Sammonds PR (2008) Evidence for seismogenic fracture of silicic magma. Nature 453(7194):511–514

    Article  Google Scholar 

  • Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4:2709

    Article  Google Scholar 

  • Ui T, Matsuwo N, Sumita M, Fujinawa A (1999) Generation of block and ash flows during the 1990–1995 eruption of Unzen Volcano, Japan. J Volcanol Geotherm Res 89:123–137

    Article  Google Scholar 

  • Vallance JW, Schneider DJ, Schilling SP (2008) Growth of the 2004–2006 Lava-Dome Complex at Mount St. Helens, Washington. In DR Sherrod, WE Scott, PH Stauffer, eds. A Volcano Rekindled: The Renewed Eruption of Mt St Helens, 2004–2006. USGS Professional Paper 1750, pp 169–208

  • Villamor P, Berryman KR, Nairn IA, Wilson K, Litchfield N, Ries W (2011) Associations between volcanic eruptions from Okataina volcanic center and surface rupture of nearby active faults, Taupo rift, New Zealand: insights into the nature of volcano-tectonic interactions. Geol Soc Am Bull 123(7–8):1383–1405

    Article  Google Scholar 

  • Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP, Clarke AB, Ewart J, Aspinall WP, Baptie B, Calder ES, Cole PD, Druitt TH, Hartford C, Herd RA, Jackson P, Lejeune AM, Lockhart AB, Loughlin SC, Luckett R, Lynch L, Norton GE, Robertson R, Watson IM, Watts RB, Young SR (1999) Magma flow instability and cyclic activity at soufriere hills volcano, montserrat, british west indies. Science 283(5405):1138–1142

    Article  Google Scholar 

  • von Aulock FW, Nichols ARL, Kennedy BM, Oze C (2013) Timescales of texture development in a cooling lava dome. Geochim Cosmochim Acta 114:72–80

    Article  Google Scholar 

  • von Aulock FW, Kennedy BM, Maksimenko A, Wadsworth FB, Lavallée Y (2017) Outgassing from open and closed magma foams. Front Earth Sci 5:1–7

    Google Scholar 

  • Wadge G, Herd R, Ryan GA, Calder ES, Komorowski JC (2010) Lava production at Soufriere Hills Volcano, Montserrat: 1995-2009. Geophys Res Lett 37(3):1–6

    Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002a) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):115–152

    Article  Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002b) The eruption of Soufriere Hills volcano, Montserrat (1995 to 1999). In: Druitt TH, Kokelaar BP (eds) Memoirs of the Geological Society of London. Geological Society of London, London, pp 115–152

    Google Scholar 

  • Westrich HR, Eichelberger JC (1994) Gas transport and bubble collapse in rhyolitic magma: an experimental approach. Bull Volcanol 56:447–458

    Article  Google Scholar 

  • Williamson BJ, Di Muro A, Horwell CJ, Spieler O, Llewellin EW (2010) Injection of vesicular magma into an andesitic dome at the effusive–explosive transition. Earth Planet Sci Lett 295(1–2):83–90

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69(3):281–300

    Article  Google Scholar 

  • Yamamoto T, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55:166–175

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ken Raureti and members of the Ruawahia 2B Trust for allowing access for fieldwork on Tarawera and to the two anonymous reviewers, as well as the editors J. Fierstein and A. Harris, for their insightful and thorough reviews which have greatly improved the manuscript. We wish to acknowledge the Earthquake Commission of New Zealand (EQC), Mighty River Power (MRP) and GNS Science for the primary funding for this study (part of grant 4616) as well as the Marsden Fast Start grant 09-UO-017C for providing supplementary funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Ashwell.

Additional information

Editorial responsibility: J. Fierstein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwell, P.A., Kennedy, B.M., Edwards, M. et al. Characteristics and consequences of lava dome collapse at Ruawahia, Taupo Volcanic Zone, New Zealand. Bull Volcanol 80, 43 (2018). https://doi.org/10.1007/s00445-018-1217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1217-1

Keywords

Navigation