Skip to main content
Log in

Volatiles and energy released by Puracé volcano

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Total CO2 output of Puracé volcano (Colombia) was estimated on the basis of fluids discharged by fumaroles, soil gases, and dissolved carbon species in the aquifer. The soil CO2 emission was computed from a field survey of 512 points of CO2 soil flux measurements at the main degassing areas of Puracé volcano. The CO2 flux from Puracé’s plume was estimated using an indirect method, that used the SO2 plume flux and CO2/SO2 ratio of the main high temperature fumarole. The total output of CO2 was estimated at ≅ 1500 t/day. The main contribution of CO2 comes from the plume (summit degassing) and from soil degassing that emit 673 and 812 t/day, respectively. The contributions of summit and soil degassing areas are comparable, indicating an intermediate degassing style partitioned between closed and open conduit systems. The estimated water vapor discharge (as derived from the chemical composition of the fumaroles, the H2O/CO2 ratio, and the SO2 plume flux) allowed calculation of the total thermal energy (fumarolic, soil degassing, and aquifer) released from the Puracé volcanic system. This was 360 MW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aiuppa A, Inguaggiato S, McGonigle AJS, O'Dwyer M, Oppenheimer C, Padgett MJ, Rouwet D, Valenza M (2005) H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. Geochim Cosmochim Acta 69:1861–1871

    Article  Google Scholar 

  • Allard P, Carbonnelle J, Dajlevic D, Le Bronec J, Morel P, Robe, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351(6325):387–391

    Article  Google Scholar 

  • Arthur MA (2000) Volcanic contributions to the carbon and sulfur geochemical cycles and global change. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 1045–1056

    Google Scholar 

  • Baubron JC, Allard P, Sabroux JC, Tedesco DF, Toutain JP (1991) Soil gas emanation as precursory indicators of volcanic eruptions. J Geol Soc 148:571–576. https://doi.org/10.1144/gsjgs.148.3.0571

    Article  Google Scholar 

  • Brantley S, Koepenick K (1995) Measured carbondioxide emissions from Oldoinyo Lengai and the skewed distribution of passive volcanic fluxes. Geology 23:933–936. https://doi.org/10.1130/0091-7613 (1995)

  • Brusca L, Inguaggiato S, Longo M, Madonia P, Maugeri R (2004) The 2002–2003 eruption of Stromboli (Italy): evaluation of the volcanic activity by means of continuous monitoring of soil temperature, CO2 flux, and meteorological parameters. Geochem Geophys Geosyst 5:Q12001. https://doi.org/10.1029/2004GC000732

    Article  Google Scholar 

  • Camarda M, Prano V, Gurrieri S, Valenza M (2017) Temporal variations in air permeability and soil CO2 flux in volcanic ash soils (island of Vulcano, Italy). Geochem Geophys Geosyst. https://doi.org/10.1002/2017GC006857

  • Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl Geochem 13:631–642

    Article  Google Scholar 

  • Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620. https://doi.org/10.1029/2004GL019614

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F (2003) Aplicación de la simulación estocástica a CO2 de flujo desde el suelo: El mapeo y cuantificación de la liberación de gas. J Geophys Res 108. https://doi.org/10.1029/2002JB002165 ISSN: 0.148 a 0.227

  • Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Volcanol 58:41–50. https://doi.org/10.1007/s004450050124

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552. https://doi.org/10.1016/S0883-2927(97)00076-0

    Article  Google Scholar 

  • Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) CO2 diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110:B08204. https://doi.org/10.1029/ 2004JB003542

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini M, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res 115:B03205. https://doi.org/10.1029/2008JB006258

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Frondini F, Inguaggiato S, Matteucci F (2011) Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet Sci Lett 304:389–398

    Article  Google Scholar 

  • Collard N, Taran Y, Peiffer L, Campion R, Paz MPJ (2014) Solute fluxes and geothermal potential of Tacaná volcano-hydrothermal system, Mexico–Guatemala. J Volcanol Geotherm Res 288:123–131

    Article  Google Scholar 

  • D’Alessandro W, Giammanco S, Parello F, Valenza M (1997) CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bull Volcanol 58:455–458. https://doi.org/10.1007/s004450050154.

    Article  Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation, dev. geomathematics, vol 2. Elsevier, New York, p 363

    Google Scholar 

  • De Gregorio S, Diliberto IS, Giammanco S, Gurrieri S, Valenza M (2002) Tectonic control over large-scale diffuse degassing in eastern Sicily (Italy). GEOFLUIDS 2:273–284, ISSN: 1468-8115. https://doi.org/10.1046/j.1468-8123.2002.00043.x

    Article  Google Scholar 

  • Diliberto IS, Gurrieri S, Valenza M (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984-1994. BULLETIN OF VOLCANOLOGY, 64:219–228, ISSN: 0258-8900, https://doi.org/10.1007/s00445-001-0198-6

  • Favara R, Giammanco S, Inguaggiato S, Pecoraino G (2001) Preliminary estimate of CO2 output from Pantelleria Island volcano (Sicily, Italy): evidence of active mantle degassing. Appl Geochem 16:883–894

    Article  Google Scholar 

  • Federico C, Inguaggiato S, Chacón Z, Londoño JM, Gil E, Alzate D (2017) Vapour discharges on Nevado del Ruiz during the recent activity: clues on the composition of the deep hydrothermal system and its effects on thermal springs. J Volcanol Geotherm Res https://doi.org/10.1016/j.jvolgeores.2017.04.007

  • Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:13–53

    Article  Google Scholar 

  • Fridriksson T (2009) Diffuse CO2 degassing through soil and geothermal exploration. Presented at “short course on surface exploration for geothermal resources”, organized by UNU-GTP and LaGeo, in Ahuachapán and Santa Tecla, El Salvador.

  • Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res Atmos 115(D5)

  • Giammanco S, Inguaggiato S, Valenza M (1998) Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. J Volcanol Geoth Res 81(3–4):297–310

    Article  Google Scholar 

  • Giammanco S, Gurrieri S, Valenza M (2006) Fault-controlled soil CO 2 degassing and shallow magma bodies: summit and lower east rift of Kilauea volcano (Hawaii), 1997. Pure Appl Geophys 163(4):853–867

    Article  Google Scholar 

  • Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39:132–145

    Article  Google Scholar 

  • Gutiérrez X (2009) Estudio Geoquímico de gases en torno a la Falla el Hollón, Berlín, Usulután. In: Tesis para optar al grado de licenciatura en Ciencias Químicas. Universidad de El Salvador, El Salvador

    Google Scholar 

  • Hall M, Wood C (1985) Volcano-tectonic segmentation of the Northern Andes. Geology 13:203–207

    Article  Google Scholar 

  • Hernández PA et al (2001) CO2 degassing by advective flow from Usu Volcano, Japan. Science 292:83–86

    Article  Google Scholar 

  • Ingebritsen SE, Galloway DL, Colvard EM, Sorey ML, Mariner RH (2001) Time variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring. J Volcanol Geotherm Res 111:1–23

    Article  Google Scholar 

  • Inguaggiato S, Martin-Del Pozzo AL, Aguayo A, Capasso G, Favara R (2005) Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl (Mexico): evidence of gas-water interaction magmatic component and shallow fluids. J Volcanol Geoth Res 141:91–108

    Article  Google Scholar 

  • Inguaggiato S, Hidalgo S, Beate B, Bourquin J (2010) Geochemical and isotopic characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc. GEOFLUIDS 10:525–541- 2010

    Article  Google Scholar 

  • Inguaggiato S, Vita F, Rouwet D, Bobrowski N, Morici S, Sollami A (2011) Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: the 2007 Stromboli eruption (Italy). Bull Volcanol. https://doi.org/10.1007/s00445-010-0442-z

  • Inguaggiato S, Calderone L, Inguaggiato C, Mazot A, Morici S, Vita F (2012a) Long-time variation of soil CO2 fluxes at summit crater of Vulcano (Italy). Bull Volcanol 74:1859–1863. https://doi.org/10.1007/s00445-012-0637-6

    Article  Google Scholar 

  • Inguaggiato S, Mazot A, Diliberto S, Inguaggiato C, Madonia P, Rouwet D, Vita F (2012b) Total CO2 output from Vulcano Island (Aeolian Islands, Italy). Geochem Geophys Geosyst 13:1–19 https://doi.org/10.1029/2011GC003920 (Q02012)

    Article  Google Scholar 

  • Inguaggiato S, Jacome Paz MP, Mazot A, Delgado Granados H, Inguaggiato C, Vita F (2013) CO2 output discharged from Stromboli Island (Italy). Chem Geol. https://doi.org/10.1016/j.chemgeo.2012.10.008

  • Inguaggiato S, Londoño JM, Chacón Z, Liotta M, Gil E, D Alzate (2016a) The hydrothermal system of Cerro Machín volcano (Colombia): new magmatic signals observed during 2011–2013. doi: https://doi.org/10.1016/j.chemgeo.2016.12.020

  • Inguaggiato C, Vita F, Diliberto IS, Calderone L (2016b) The role of the aquifer in soil CO2 degassing in volcanic peripheral areas: a case study of Stromboli Island (Italy). Chem Geol. https://doi.org/10.1016/j.chemgeo.2016b.12.017

  • Inguaggiato C, Censi P, D’Alessandro W, Zuddas P (2016c) Geochemical characterisation of gases along the dead sea rift: evidences of mantle-CO 2 degassing. J Volcanol Geotherm Res 320:50–57

    Article  Google Scholar 

  • Inguaggiato S, Cardellini C, Taran Y, Kalacheva E (2017a) The CO2 flux from hydrothermal systems of the Karymsky volcanic Centre, Kamchatka. J Volcanol Geotherm Res https://doi.org/10.1016/j.jvolgeores.2017.07.012

  • Inguaggiato S, Vita F, Cangemi M, Mazot A, Sollami A, Calderone L, Morici S, Jacome Paz MP (2017b) Stromboli volcanic activity variations inferred by fluids geochemistry observations: sixteen years of continuous soil CO2 fluxes monitoring (2000–2015). Chem Geol. https://doi.org/10.1016/j.chemgeo 2017b.2017.01.030

  • López D, Padrón E, Magaña M, Gomez L, Barrios L, Pérez N, Hernández P (2004) Structural control on thermal anomalies and diffuse surficial degassing at Berlín geothermal field, El Salvador. Geotherm Resour Council Trans 28:477–483

    Google Scholar 

  • Magaña M, López D, Barrios L, Perez M, Padrón E, Henriquez E (2004) Diffuse and convective degassing of soil gases and heat at the TR-6-Zapotillo hydrothermal discharge zone, Berlin Geothermal Field, El Salvador. Geotherm Resour Council Trans 28:485–488

    Google Scholar 

  • Mazot A, Rouwet D, Taran Y, Inguaggiato S, Varley N (2011) CO2 and He degassing at El Chichón volcano (Chiapas, Mexico): gas flux, origin, and relationship with local and regional tectonics. Bull Volcanol 73:423–441. https://doi.org/10.1007/s00445-010-0443-y

    Article  Google Scholar 

  • Monsalve L, Pulgarín B (1999) Cadena Volcánica de Los Coconucos: centros eruptivos y productos recientes. Boletín Geológico Ingeominas, 37, No. 1–3, Santafé de Bogotá, p. 17–51

  • Mörner NA, Etiope G (2002) Carbon degassing from the lithosphere. Glob Planet Chang 33:185–203. https://doi.org/10.1016/S0921-8181(02)00070-X

    Article  Google Scholar 

  • Orrego A, Acevedo A (1999) Geología de la plancha 364-Timbío. Publicaciones geológicas especiales del INGEOMINAS, No. 22, p. 115–170. Bogotá

  • Padrón E, López DL, Magaña MI, Marrero R, Pérez NM (2003) Diffuse degassing and relation to structural flow paths at Ahuachapan Geothermal Field, El Salvador. Geotherm Resour Council Trans 27:325–330

    Google Scholar 

  • Pecoraino G, Brusca L, D’Alessandro W, Giammanco S, Inguaggiato S, Longo M (2005) Total CO2 output from Ischia Island volcano (Italy). Geochem J 39:451–458. https://doi.org/10.2343/geochemj.39.451

    Article  Google Scholar 

  • Sano Y, Wakita H (1985) Geographical distribution of 3He⁄4He in Japan: implications for arc tectonics and incipient magmatism. J Geophys Res 90:8729–8741

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149. https://doi.org/10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  • Sortino F, Inguaggiato S, Francofonte S (1991) Determination of HF, HCl, and total sulfur in fumarolic fluids by ion chromatography. Acta Vulcanol 1:89–91

    Google Scholar 

  • Sturchio NC, Williams SN, Sano Y (1993) The hydrothermal system of Volcan Puracè, Colombia. Bull Volcanol 55:289–296

    Article  Google Scholar 

  • Taran Y, Peiffer L (2009) Hydrology, hydrochemistry and geothermal potential of El Chichón volcanohydrothermal system, Mexico, Geothermics, 38, 370–378. https://doi.org/10.1016/j.geothermics.2009.09.002

  • Toutain J, Baubron J (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27

    Article  Google Scholar 

Download references

Acknowledgements

The field campaigns carried out during this study were funded by the SGC (Servicio Geologico Colombiano). Chemical analysis were performed by SGC laboratories, while the isotopic analyses were possible thanks to Geochemical Laboratories of INGV Palermo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Inguaggiato.

Additional information

Editorial responsibility: T.P. Fischer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado, L.F.M., Inguaggiato, S., Jaramillo, M.T. et al. Volatiles and energy released by Puracé volcano. Bull Volcanol 79, 84 (2017). https://doi.org/10.1007/s00445-017-1168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1168-y

Keywords

Navigation