Skip to main content

Advertisement

Log in

Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard P, Burton M, Muré F (2005) Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature 433:407–410. doi:10.1038/nature03246

    Article  Google Scholar 

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth. Planet. Sci Lett 290:289–301. doi:10.1016/j.epsl.2009.12.013

    Google Scholar 

  • Cashman KV (2004) Volatile controls on magma ascent and eruption, in The State of the Planet: Frontiers and Challenges in Geophysics Geophys. Monogr. Ser., Vol. 150. edited by Sparks RSJ, Hawkesworth CJ 109–124, doi: 10.1029/150GM10

  • Cashman KV, Sparks RSJ (2013) How volcanoes work: a 25 year perspective. GSA Bull 125:664–690. doi:10.1130/B30720.1

    Article  Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461:780–783. doi:10.1038/nature08458

    Article  Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840. doi:10.1130/G21675.1

    Article  Google Scholar 

  • Dixon J (1997) Degassing of alkalic basalts. Am Mineral 82(368–378):1997

    Google Scholar 

  • Eaton JP, Richter DH, Krivoy HL (1987) Cycling of magma between the summit reservoir and Kīlauea Iki lava lake during the 1959 eruption of Kīlauea Volcano, in Volcanism in Hawai’i, USGS Prof. Paper. 1350 edited by Decker, RW, Wright TL, Stauffer PH 307–1335.

  • Freda C, Baker DR, Scarlato P (2005) Sulfur diffusion in basaltic melts. Geochim Cosmochim Acta 69(5061–5069):2005. doi:10.1016/j.gca.2005.02.002

    Google Scholar 

  • Goepfert K, Gardner J (2010) Influence of pre-eruptive storage conditions and volatile contents on explosive Plinian style eruptions of basic magma. Bull Volcanol 72(5):511–521

    Article  Google Scholar 

  • Gonnermann HM (2015) Magma fragmentation. Annu Rev Earth Planet Sci 43:431–458. doi:10.1146/annurev-earth-060614-105206

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2005) Nonequilibrium magma degassing: results from modeling of the ca. 1340 AD eruption of Mono Craters, California. Earth Planet Sci Lett 238:1–16. doi:10.1016/j.epsl.2005.07.021

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39(1):321–356

  • Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–215. doi:10.1126/science.1204626

    Article  Google Scholar 

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake. Hawaii Bull Volc 49:651–668

    Article  Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde-Geochem 68:117–140. doi:10.1016/j.chemer.2008.04.002

    Article  Google Scholar 

  • Humphreys MCS, Menand T, Blundy JD, Klimm K (2008) Magma ascent rates in explosive eruptions: constraints from H2O diffusion in melt inclusions. Earth. Planet. Sci Lett 270:25–40. doi:10.1016/j.epsl.2008.02.041

    Google Scholar 

  • La Spina A, Burton M, Allard P, Alparone S, Muré F (2015) Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna. Earth. Planet. Sci Lett 413:123–134. doi:10.1016/j.epsl.2014.12.038

    Google Scholar 

  • Lensky NG, Navon O, Lyakhovsky V (2004) Bubble growth during decompression of magma: experimental and theoretical investigation. J Volcanol Geotherm Res 129:7–22. doi:10.1016/S0377-0273(03)00229-4

    Article  Google Scholar 

  • Liu Y, Anderson AT, Wilson CJN (2007) Melt pockets in phenocrysts and decompression rates of silicic magmas before fragmentation. J Geophys Res 112:B06204. doi:10.1029/2006JB004500

    Google Scholar 

  • Lloyd AS, Ruprecht P, Hauri EH, Rose W, Gonnerman H, Plank T (2014) NanoSIMS results from olivine-hosted melt embayments: magma ascent rate during explosive basaltic eruptions. J Volcanol Geotherm Res 283:1–18. doi:10.1016/j.jvolgeores.2014.06.002

    Article  Google Scholar 

  • Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 283:73(1):1–18. doi:10.1016/0377-0273(96)00018-2

    Article  Google Scholar 

  • Mangan MT, Cashman KV, Swanson DA (2014) The dynamics of Hawaiian-style eruptions: a century of study, in Characteristics of Hawaiian Volcanoes edited by Poland MP, Takahashi TJ, Landowski CM USGS Prof. Paper, 1801, doi: 10.3133/pp18018

  • Mastin LG (2002) Insights into volcanic conduit flow from an open-source numerical model. Geochem Geophys Geosyst 3:7. doi:10.1029/2001GC000192

    Article  Google Scholar 

  • Mastin LG, Ghiorso MS (2001) Adiabatic temperature changes of magma–gas mixtures during ascent and eruption. Contrib Min Pet 141(3):307–321

    Article  Google Scholar 

  • May M, Carey RJ, Swanson DA, Houghton BF (2015) Reticulite-producing fountains from ring fractures in Kīlauea Caldera ca. 1500 CE, in Hawaiian Volcanoes: From Source to Surface edited by R. Carey, V. Cayol, M. Poland and D. Weis, pp. 351–367, doi: 10.1002/9781118872079.ch16

  • McPhie J, Walker GPL, Christiansen RL (1990) Phreatomagmatic and phreatic fall and surge deposits from explosions at Kīlauea Volcano, Hawai’i, 1790 A.D.: Keanakakoi Ash Member. Bull. Volc 52:334–354. doi:10.1007/BF00302047

    Article  Google Scholar 

  • Namiki A, Manga M (2006) Influence of decompression rate on the expansion velocity and expansion style of bubbly fluids. J Geophys Res 111:B11. doi:10.1029/2005JB004132

    Article  Google Scholar 

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169:48–60. doi:10.1016/j.jvolgeores.2007.07.020

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt–H2O–CO2 solution model written in visual basic for excel. Comput Geosci 28:597–604. doi:10.1016/S0098-3004(01)00081-4

    Article  Google Scholar 

  • Parcheta C, Fagents S, Swanson DA, Houghton BF, Ericksen T (2015) Hawaiian fissure fountains: quantifying vent and shallow conduit geometry, Episode1 of the 1969–1974 Mauna Ulu Eruption In Hawaiian Volcanoes: From Source to Surface Geophys. Monogr. Ser., vol. 208, edited by Carey R, Cayol V, Poland M, Weis D 369–391, doi: 10.1002/9781118872079.ch16

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107. doi:10.1016/j.jvolgeores.2004.01.002

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions—IX. The transition between Hawaiian-style and lava fountaining and Strombolian explosive activity. Geophys J Int 121:1. doi:10.1111/j.1365-246X.1995.tb03523.x

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1999) A Plinian treatment of fallout from Hawaiian lava fountains. J Volcanol Geotherm Res 88:67–75. doi:10.1016/S0377-0273(98)00103-6

    Article  Google Scholar 

  • Pichavant M, Di Carlo I, Rotolo SG, Scaillet B, Burgisser A, Le Gall N, Martel C (2013) Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Min Petrol 166(2):545–561. doi:10.1007/s00410-013-0890-5

    Article  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage, and transport at shield-stage. In Characteristics of Hawaiian Volcanoes, USGS Prof. Paper 1801, edited by Poland MP, Takahashi TJ, Landowski CM, doi: 10.3133/pp18015

  • Proussevitch AA, Sahagian DL, Anderson AT (1993) Dynamics of diffusive bubble growth in magmas: isothermal case. J Geophys Res 98(22283–22307):1993. doi:10.1029/93JB02027

    Google Scholar 

  • Pyle DM (2015) Sizes of volcanic eruptions, In Encyclopedia of Volcanoes 2nd Edition edited by Sigurdsson, H., B. Houghton., S. McNutt., H. Rymer., H. and J. Stix. pp. 257–264, Elsevier.

  • Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:68–72. doi:10.1038/nature12342

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: experiments and the 1980- 1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685. doi:10.1029/93JB01613

    Article  Google Scholar 

  • Saal AE, Hauri EH, Cascio MJ, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195. doi:10.1038/nature07047

    Article  Google Scholar 

  • Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354. doi:10.1016/j.jvolgeores.2006.07.006

    Article  Google Scholar 

  • Sahagian DL, Proussevitch AA (1996) Thermal effects of magma degassing. J Volcanol Geotherm Res 74(1)

  • Sides I, Edmonds M, Maclennan J, Houghton BF, Swanson DA, Steele-MacInnis MJ (2014a) Magma mixing and high fountaining during the 1959 Kīlauea Iki eruption, Hawai ‘i. Earth Planet Sci Lett 400:102–112

    Article  Google Scholar 

  • Sides IR, Edmonds M, Maclennan J, Swanson DA, Houghton BF (2014b) Eruption style at Kīlauea Volcano in Hawai’i linked to primary melt composition. Nat Geosci 7:464–469. doi:10.1038/ngeo2140

    Article  Google Scholar 

  • Spilliaert, N., P. Allard, N Métrich, and A V. Sobolev (2006), Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy), J. Geophys. Res., 111, B04203, doi:10.1029/2005JB003934.

  • Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption. Bull. Volc 73:511–529. doi:10.1007/s00445-010-0426-z

    Article  Google Scholar 

  • Suzuki Y, Fujii T (2010) Effect of syneruptive decompression path on shifting intensity in basaltic sub-Plinian eruption: implication of microlites in Yufune-2 scoria from Fuji volcano, Japan. J Volcanol Geotherm Res 198:158–176. doi:10.1016/j.jvolgeores.2010.08.020

    Article  Google Scholar 

  • Swanson DA, Rose TR, Fiske RS, McGeehin JP (2012) Keanakakoi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea’s caldera in about 1480 CE. J Volcanol Geotherm Res 215:8–25. doi:10.1016/j.jvolgeores.2011.11.009

    Article  Google Scholar 

  • Swanson DA, Rose TR, Mucek AE, Garcia MO, Fiske RS, Mastin LG (2014) Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai ‘i. Geology 42(7):631–634. doi:10.1130/G35701.1

    Article  Google Scholar 

  • Toramaru A, Noguchi S, Oyoshihara S, Tsune A (2008) MND (microlite number density) water exsolution rate meter. J Volcanol Geotherm Res 175:156–167. doi:10.1016/j.jvolgeores.2008.03.035

    Article  Google Scholar 

  • Vergniolle S, Jaupart C (1986) Separated two-phase flow and basaltic eruptions. J Geophys Res 91:12842–12860. doi:10.1029/JB091iB12p12842

    Article  Google Scholar 

  • Wallace PJ, Anderson AT Jr (1998) Effects of eruption and lava drainback on the H2O contents of basaltic magmas at Kīlauea Volcano. Bull Volc 59(5):327–344. doi:10.1007/s004450050195

    Article  Google Scholar 

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86:2971–3001. doi:10.1029/JB086iB04p02971

    Article  Google Scholar 

  • Witham F, Blundy J, Kohn SC, Lesne P, Dixon J, Chirakov SV, Botcharnikov R (2012) SolEx: a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput Geosci 45:87–97. doi:10.1016/j.cageo.2011.09.021

    Article  Google Scholar 

  • Woods AW (1995) The dynamics of explosive volcanic eruptions. Revs Geophys 33(495):530. doi:10.1029/95RG02096

    Google Scholar 

  • Wright HM, Cashman KV, Mothes PA, Hall ML, Ruiz AG, Le Pennec JL (2012) Estimating rates of decompression from textures of erupted ash particles produced by 1999–2006 eruptions of Tungurahua volcano, Ecuador. Geology 40:619–622. doi:10.1130/G32948.1

    Article  Google Scholar 

  • Zhang Y, Xu Z, Zhu M, Wang H (2007) Silicate melt properties and volcanic eruptions. Rev Geophys 45(27):2007. doi:10.1029/2006RG000216

    Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408. doi:10.2138/rmg.2010.72.8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant (EAR1145159). H.G. was supported by NSF grant EAR1145187. D.J.F. also acknowledges support from a Lamont-Doherty Postdoctoral Fellowship and P.R. from NSF grants EAR1348022 and EAR1426820. We are grateful to Julianne Gross at AMNH for assistance with the electron microprobe analysis, Alex Lloyd for discussions and lab support, and Jacob Lowenstern and Mike Poland for comments on an earlier version of the paper. We acknowledge reviews by Nicole Metrich and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Ferguson.

Additional information

Editorial responsibility: P. Allard

Electronic supplementary material

ESM 1

(XLSX 74 kb)

ESM 2

(PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, D.J., Gonnermann, H.M., Ruprecht, P. et al. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bull Volcanol 78, 71 (2016). https://doi.org/10.1007/s00445-016-1064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1064-x

Keywords

Navigation