Skip to main content
Log in

Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour require robust spatio-temporal frameworks within the fields, but an analysis of the potential proximal and distal regional volcano-tectonic processes is also needed. Jeju Island (Republic of Korea) is a volcanic field that has been extensively drilled and dated. It is also located near one of the world’s best-studied tectonic plate boundaries: the subduction zone in southwestern Japan, which generates the Ryukyu and SW Japan arcs. A new set of 40Ar/39Ar ages collected from cores penetrating the entire Jeju eruptive pile, along with geochemical information, is used to construct a temporal and volumetric model for the volcano’s growth. The overall pattern indicates inception of volcanism at ~1.7 Ma, with an initial 1.2 Myr of low-rate activity, followed by over an order of magnitude rise over the last 0.5 Myr. The magma flux at Jeju correlates well with increased extension rates in the arc/backarc region. In particular, we infer that the increased trenchward mantle flow, caused by the greater rollback of the Philippine Sea Plate, activated pre-existing shear weaknesses in the mantle beneath Jeju, resulting in mantle upwelling and decompression melting that caused a change in compositions and an increase in eruption rates at Jeju. Thus, the volcanic activity of an intraplate field system can be modulated by regional subduction processes occurring more than 650 km away. This model may explain the frequent observation of pulsatory behaviour seen in many monogenetic volcanic fields worldwide that lie within 1,000 km of subduction zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DL (2001) Top-down tectonics? Science 293:2016–2018. doi:10.1126/science.1065448

    Google Scholar 

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland volcanic field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Google Scholar 

  • Bergman SC, Foland KA, Spera FJ (1981) On the origin of an amphibole-rich vein in a peridotite inclusion from the lunar crater volcanic field, Nevada, U.S.A. Earth Planet Sci Lett 56:343–361. doi:10.1016/0012-821X(81)90139-4

    Google Scholar 

  • Bjerg EA, Ntaflos T, Kurat G, Dobosi G, Labudía CH (2005) The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts. J S Am Earth Sci 18:125–145. doi:10.1016/j.jsames.2004.09.002

    Google Scholar 

  • Bradshaw TK, Hawkesworth CJ, Gallagher K (1993) Basaltic volcanism in the Southern Basin and range: no role for a mantle plume. Earth Planet Sci Lett 116:45–62. doi:10.1016/0012-821X(93)90044-A

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950. doi:10.1007/s00410-010-0515-1

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012a) How small-volume basaltic magmatic systems develop: a case study from the Jeju Island volcanic field, Korea. J Petrol 53:985–1018

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Maas R (2012b) Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island volcanic field, Korea. Lithos 148:337–352

    Google Scholar 

  • Brenna M, Price R, Cronin SJ, Smith IE, Sohn YK, Kim GB, Maas R (2014) Final magma storage depth modulation of explosivity and trachyte–phonolite genesis at an intraplate volcano: a case study from Ulleung Island, South Korea. J Petrol 55:709–747

    Google Scholar 

  • Briggs RM, Itaya T, Lowe DJ, Keane AJ (1989) Ages of the Pliocene-Pleistocene Alexandra and Ngatutura Volcanics, western North Island, New Zealand, and some geological implications. N Z J Geol Geophys 32:417–427

    Google Scholar 

  • Brothers RN, Delaloye M (1982) Obducted ophiolite of North Island, New Zealand: origin, age, emplacement and tectonic implications for Tertiary and Quaternary volcanicity. N Z J Geol Geophys 25:257–274

    Google Scholar 

  • Choi SH, Kwon S-T, Mukasa SB, Sagong H (2005) Sr–Nd–Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chem Geol 221:40–64. doi:10.1016/j.chemgeo.2005.04.008

    Google Scholar 

  • Choi SH, Mukasa SB, Kwon S-T, Andronikov AV (2006) Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol 232:134–151. doi:10.1016/j.chemgeo.2006.02.014

    Google Scholar 

  • Choi H-O, Choi SH, Yu Y (2014) Isotope geochemistry of Jeongok basalts, northernmost South Korea: implications for the enriched mantle end-member component. J Asian Earth Sci 91:56–68. doi:10.1016/j.jseaes.2014.05.010

    Google Scholar 

  • Christiansen RL, Foulger GR, Evans JR (2002) Upper-mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114:1245–1256. doi:10.1130/0016-7606(2002)114<1245:umooty>2.0.co;2

    Google Scholar 

  • Christova C (2004) Stress field in the Ryukyu–Kyushu Wadati–Benioff zone by inversion of earthquake focal mechanisms. Tectonophysics 384:175–189. doi:10.1016/j.tecto.2004.03.010

    Google Scholar 

  • Conly AG, Brenan JM, Bellon H, Scott SD (2005) Arc to rift transitional volcanism in the Santa Rosalía Region, Baja California Sur, Mexico. J Volcanol Geotherm Res 142:303–341. doi:10.1016/j.jvolgeores.2004.11.013

    Google Scholar 

  • Conrad CP, Bianco TA, Smith EI, Wessel P (2011) Patterns of intraplate volcanism controlled by asthenospheric shear. Nat Geosci 4:317–321

    Google Scholar 

  • Cukur D, Horozal S, Kim DC, Han HC (2011) Seismic stratigraphy and structural analysis of the northern East China Sea Shelf Basin interpreted from multi-channel seismic reflection data and cross-section restoration. Mar Pet Geol 28:1003–1022. doi:10.1016/j.marpetgeo.2011.01.002

    Google Scholar 

  • De Beni E, Branca S, Coltelli M, Groppelli G, Wijbrans JR (2011) 40Ar/39Ar isotopic dating of Etna volcanic succession. Ital J Geosci 130:292–305. doi:10.3301/IJG.2011.14

    Google Scholar 

  • Demidjuk Z, Turner S, Sandiford M, George R, Foden J, Etheridge M (2007) U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia. Earth Planet Sci Lett 261:517–533. doi:10.1016/j.epsl.2007.07.006

    Google Scholar 

  • Dokka RK, Merriam RH (1982) Late Cenozoic extension of northeastern Baja California, Mexico. Geol Soc Am Bull 93:371–378. doi:10.1130/0016-7606(1982)93<371:lceonb>2.0.co;2

    Google Scholar 

  • Downes H (1990) Shear zones in the upper mantle—relation between geochemical enrichment and deformation in mantle peridotites. Geology 18:374–377. doi:10.1130/0091-7613(1990)018<0374:szitum>2.3.co;2

    Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 109:340–354. doi:10.1007/bf00283323

    Google Scholar 

  • Fabbri O, Monié P, Fournier M (2004) Transtensional deformation at the junction between the Okinawa trough back-arc basin and the SW Japan island arc. In: Grocott J, McCaffrey KJW, Taylor G, Tikoff B (eds) Vertical coupling and decoupling in the lithosphere, vol 227, vol 1. Geological Society, London, pp 297–312. doi:10.1144/gsl.sp.2004.227.01.15, Special Publications 227

    Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134. doi:10.1016/j.epsl.2005.02.008

    Google Scholar 

  • Ferrari L, Petrone CM, Francalanci L (2001) Generation of oceanic-island basalt–type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology 29:507–510. doi:10.1130/0091-7613(2001)029<0507:gooibt>2.0.co;2

    Google Scholar 

  • Fitton JG (2007) The OIB paradox. Geol Soc Am Spec Pap 430:387–412. doi:10.1130/2007.2430(20)

    Google Scholar 

  • Fournier M, Fabbri O, Angelier J, Cadet JP (2001) Regional seismicity and on-land deformation in the Ryukyu arc: implications for the kinematics of opening of the Okinawa trough. J Geophys Res 106:13751–13768

    Google Scholar 

  • Fujita E et al (2013) Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bull Volcanol 75:1–14. doi:10.1007/s00445-012-0679-9

    Google Scholar 

  • Fukao Y, Obayashi M, Inoue H, Nenbai M (1992) Subducting slabs stagnant in the mantle transition zone. J Geophys Res Solid Earth 97:4809–4822. doi:10.1029/91jb02749

    Google Scholar 

  • Germa A, Quidelleur X, Gillot PY, Tchilinguirian P (2010) Volcanic evolution of the back-arc Pleistocene Payun Matru volcanic field (Argentina). J S Am Earth Sci 29:717–730. doi:10.1016/j.jsames.2010.01.002

    Google Scholar 

  • Germa A, Connor L, Cañon-Tapia E, Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75:1–14. doi:10.1007/s00445-013-0782-6

    Google Scholar 

  • Harangi S, Sági T, Seghedi I, Ntaflos T (2013) Origin of basaltic magmas of Perşani volcanic field, Romania: a combined whole rock and mineral scale investigation. Lithos 180–181:43–57. doi:10.1016/j.lithos.2013.08.025

    Google Scholar 

  • Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Inter 149:31–51

    Google Scholar 

  • Hoang N, Uto K (2003) Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithospheric mantle interaction. Chem Geol 198:249–268

    Google Scholar 

  • Hoang N, Uto K, Matsumoto A, Ji I (2013) Pleistocene intraplate magmatism in the Goto Islands, SW Japan: implications for mantle source evolution and regional geodynamics. J Geodyn 68:1–17

    Google Scholar 

  • Hodder APW (1984) Late Cenozoic rift development and intra-plate volcanism in northern New Zealand inferred from geochemical discrimination diagrams. Tectonophysics 101:293–318

    Google Scholar 

  • Hoshizumi H, Uto K, Watanabe K (1999) Geology and eruptive history of Unzen volcano, Shimabara Peninsula, Kyushu, SW Japan. J Volcanol Geotherm Res 89:81–94. doi:10.1016/S0377-0273(98)00125-5

    Google Scholar 

  • Houghton BF, Wilson CJN, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM, Pringle MS (1995) Chronology and dynamics of a large silicic magmatic system: Central Taupo Volcanic Zone, New Zealand. Geology 23:13–16. doi:10.1130/0091-7613(1995)023<0013:cadoal>2.3.co;2

    Google Scholar 

  • Huang J, Zhao D (2006) High-resolution mantle tomography of China and surrounding regions. J Geophys Res Solid Earth 111:B09305. doi:10.1029/2005jb004066

    Google Scholar 

  • Hughes GR, Mahood GA (2011) Silicic calderas in arc settings: characteristics, distribution, and tectonic controls. Geol Soc Am Bull 123:1577–1595

    Google Scholar 

  • Itoh Y, Takemura K, Kamata H (1998) History of basin formation and tectonic evolution at the termination of a large transcurrent fault system: deformation mode of central Kyushu, Japan. Tectonophysics 284:135–150. doi:10.1016/S0040-1951(97)00167-4

    Google Scholar 

  • Itoh Y, Matsuoka K, Takemura K (1999) Paleogene and Plio-Pleistocene basin formation around northwestern Kyushu, Japan. Island Arc 8:56–65. doi:10.1046/j.1440-1738.1999.00223.x

    Google Scholar 

  • Iwamori H (1991) Zonal structure of Cenozoic basalts related to mantle upwelling in southwest Japan. J Geophys Res Solid Earth 96:6157–6170

    Google Scholar 

  • Iwamori H (1992) Degree of melting and source composition of Cenozoic basalts in southwest Japan: evidence for mantle upwelling by flux melting. J Geophys Res Solid Earth 97:10983–10995

    Google Scholar 

  • Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res Solid Earth 107:2360. doi:10.1029/2001jb001225

    Google Scholar 

  • Jolivet L, Tamaki K (1992) Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan Arc. Proc Ocean Drill Program Sci Results 127(128):1311–1331

    Google Scholar 

  • Jolivet L, Shibuya H, Fournier M (1995) Paleomagnetic rotations and the Japan Sea Opening. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. Am Geophys Union, pp 355–369. doi:10.1029/GM088p0355

  • Kamata H (1989) Volcanic and structural history of the Hohi volcanic zone, central Kyushu, Japan. Bull Volcanol 51:315–332. doi:10.1007/bf01056894

    Google Scholar 

  • Kang S, Lim D, Kim S-Y (2010) Benthic foraminiferal assemblage of Seogwipo formation in Jeju Island, South Sea of Korea: implication for late Pliocene to early Pleistocene cold episode in the northwestern Pacific margin. Quat Int 225:138–146. doi:10.1016/j.quaint.2010.04.009

    Google Scholar 

  • Kay SM, Burns WM, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat.), 407:19–60. doi:10.1130/2006.2407(02)

  • Kay S, Jones H, Kay R (2013) Origin of tertiary to recent EM- and subduction-like chemical and isotopic signatures in Auca Mahuida region (37°–38°S) and other patagonian plateau lavas. Contrib Mineral Petrol 166:165–192. doi:10.1007/s00410-013-0870-9

    Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the quaternary Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 266:16–33. doi:10.1016/j.jvolgeores.2013.09.003

    Google Scholar 

  • Kim KH, Park Y (2010) The 20 January 2007 ML 4.8 Odaesan earthquake and its implications for regional tectonics in Korea. Bull Seismol Soc Am 100:1395–1405

    Google Scholar 

  • Kimura J-I et al (2003) Late Cenozoic volcanic activity in the Chugoku area, southwest Japan arc during back-arc basin opening and reinitiation of subduction. Island Arc 12:22–45. doi:10.1046/j.1440-1738.2003.00377.x

    Google Scholar 

  • Kimura J-I, Stern RJ, Yoshida T (2005) Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol Soc Am Bull 117:969–986

    Google Scholar 

  • Kita I, Yamamoto M, Asakawa Y, Nakagawa M, Taguchi S, Hasegawa H (2001) Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu–Shimabara graben system, Kyushu island, Japan. J Volcanol Geotherm Res 111:99–109. doi:10.1016/S0377-0273(01)00222-0

    Google Scholar 

  • Kita I et al (2012) Rifting of Kyushu, Japan, based on the fault-controlled concurrent eruption of oceanic island basalt-type and island arc-type lavas. Bull Volcanol 74:1121–1139

    Google Scholar 

  • Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationship between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72:331–340

    Google Scholar 

  • Kodama K, Tashiro H, Takeuchi T (1995) Quaternary counterclockwise rotation of south Kyushu, southwest Japan. Geology 23:823–826

    Google Scholar 

  • Koh GW, Park JB (2010) The study on geology and volcanism in Jeju Island (III): early lava effusion records in Jeju Island on the basis of 40Ar/39Ar absolute ages of lava samples. Econ Environ Geol 43:163–176

    Google Scholar 

  • Koh GW, Park JB, Park YS (2008) The study on geology and volcanism in Jeju Island (I): petrochemistry and 40Ar/39Ar absolute ages of the subsurface volcanic rock cores from boreholes in the eastern lowland of Jeju Island. Econ Environ Geol 41:93–113

    Google Scholar 

  • Koh GW, Park JB, Kang BR, Kim GP, Moon DC (2013) Volcanism in Jeju Island. J Geol Soc Korea 49:209–230

    Google Scholar 

  • Kohlstedt DL, Holtzman BK (2009) Shearing melt out of the earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Ann Rev Earth Planet Sci 37:561–593. doi:10.1146/annurev.earth.031208.100104

    Google Scholar 

  • Koppers AAP (2002) ArArCALC—software for Ar-40/Ar-39 age calculations. Comput Geosci 28:605–619. doi:10.1016/S0098-3004(01)00095-4

    Google Scholar 

  • Kubo A, Fukuyama E (2003) Stress field along the Ryukyu Arc and the Okinawa trough inferred from moment tensors of shallow earthquakes. Earth Planet Sci Lett 210:305–316

    Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504. doi:10.1126/ science.1154339

    Google Scholar 

  • Kuritani T, Ohtani E, Kimura J-I (2011) Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci 4:713–716

    Google Scholar 

  • Lee S, Rhie J (2012) Preliminary S receiver function study of lithosphere-asthenosphere boundary in the Korean Peninsula. In: AGU Fall Meeting Abstracts. p 2600

  • Lei J, Zhao D (2005) P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397:281–295

    Google Scholar 

  • Leloup PH, Kienast J-R (1993) High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan—Red River, People’s Republic of China. Earth Planet Sci Lett 118:213–234. doi:10.1016/0012-821X(93)90169-A

    Google Scholar 

  • Letouzey J, Kimura M (1985) Okinawa trough genesis: structure and evolution of a backarc basin developed in a continent. Mar Pet Geol 2:111–130. doi:10.1016/0264-8172(85)90002-9

    Google Scholar 

  • Lian OB, Shane PA (2000) Optical dating of paleosols bracketing the widespread Rotoehu tephra, North Island, New Zealand. Quat Sci Rev 19:1649–1662. doi:10.1016/S0277-3791(00)00003-2

    Google Scholar 

  • Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Inter 155:300–312. doi:10.1016/j.pepi.2006.01.003

    Google Scholar 

  • Machida H (2002) Volcanoes and tephras in the Japan area. Global Environ Res 6:19–28

    Google Scholar 

  • Machida H, Arai F (1983) Extensive ash falls in and around the Sea of Japan from large late quaternary eruptions. J Volcanol Geotherm Res 18:151–164

    Google Scholar 

  • Mahony SH, Wallace LM, Miyoshi M, Villamor P, Sparks RSJ, Hasenaka T (2011) Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan. Geol Soc Am Bull 123:2201–2223

    Google Scholar 

  • Malpas J, Spörli KB, Black PM, Smith IEM (1992) Northland ophiolite, New Zealand, and implications for plate-tectonic evolution of the southwest Pacific. Geology 20:149–152. doi:10.1130/0091-7613(1992)020<0149:nonzai>2.3.co;2

    Google Scholar 

  • Mashima H (2009) A melting anomaly in Northwest Kyushu, Southwest Japan: a consequence of the tectonic evolution of NW Kyushu and the origin of a pseudo hot spot in a convergent zone. J Volcanol Geotherm Res 186:195–209

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Google Scholar 

  • McGee LE, Beier C, Smith IEM, Turner SP (2011) Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contrib Mineral Petrol 162:547–563

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343. doi:10.1126/science.1092485

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Google Scholar 

  • Moriwaki H, Westgate JA, Sandhu AS, Preece SJ, Arai F (2008) New glass fission-track ages of middle Pleistocene tephras on Yakushima Island, southern Japan. Quat Int 178:128–137. doi:10.1016/j.quaint.2006.11.013

    Google Scholar 

  • Nakada M, Tahara M, Shimizu H, Nagaoka S, Uehira K, Suzuki S (2002) Late Pleistocene crustal uplift and gravity anomaly in the eastern part of Kyushu, Japan, and its geophysical implications. Tectonophysics 351:263–283. doi:10.1016/S0040-1951(02)00161-0

    Google Scholar 

  • Nakamura K, Uyeda S (1980) Stress gradient in arc–back arc regions and plate subduction. J Geophys Res Solid Earth 85:6419–6428. doi:10.1029/JB085iB11p06419

    Google Scholar 

  • Nakamura E, Campbell IH, McCulloch MT, Sun SS (1989) Chemical geodynamics in a back arc region around the Sea of Japan: implications for the genesis of alkaline basalts in Japan, Korea, and China. J Geophys Res Solid Earth 94:4634–4654

    Google Scholar 

  • Nakamura E, McCulloch MT, Campbell IH (1990) Chemical geodynamics in the back-arc region of Japan based on the trace element and Sr-Nd isotopic compositions. Tectonophysics 174:207–233

    Google Scholar 

  • Natland JH (2007) ΔNb and the role of magma mixing at the East Pacific Rise and Iceland. Geol Soc Am Spec Pap 430:413–449. doi:10.1130/2007.2430(21)

    Google Scholar 

  • Negrete-Aranda R, Cañón-Tapia E (2008) Post-subduction volcanism in the Baja California Peninsula, Mexico: the effects of tectonic reconfiguration in volcanic systems. Lithos 102:392–414. doi:10.1016/j.lithos.2007.08.013

    Google Scholar 

  • Negrete-Aranda R, Cañón-Tapia E, Brandle JL, Ortega-Rivera MA, Lee JKW, Spelz RM, Hinojosa-Corona A (2010) Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: tectonics and volcanism of San Borja volcanic field. J Volcanol Geotherm Res 192:97–115. doi:10.1016/j.jvolgeores.2010.02.014

    Google Scholar 

  • Nishimura S, Hashimoto M, Ando M (2004) A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc. Phys Earth Planet Inter 142:185–203. doi:10.1016/j.pepi.2003.12.014

    Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–447. doi:10.1016/0016-7037(88)90099-3

    Google Scholar 

  • Otofuji Y-I, Matsuda T (1987) Amount of clockwise rotation of Southwest Japan—fan shape opening of the southwestern part of the Japan Sea. Earth Planet Sci Lett 85:289–301

    Google Scholar 

  • Pacanovsky KM, Davis DM, Richardson RM, Coblentz DD (1999) Intraplate stresses and plate-driving forces in the Philippine Sea Plate. J Geophys Res Solid Earth 104:1095–1110. doi:10.1029/98jb02845

    Google Scholar 

  • Park KH, Ahn JS, Kee WS, Park WB (2006) Guidebook for a geological tour of Jeju Island. KIGAM, Taejon

    Google Scholar 

  • Pietruszka AJ, Rubin KH, Garcia MO (2001) 226Ra-230Th-238U disequilibria of historical Kilauea lavas (1790-1982) and the dynamics of mantle melting within the Hawaiian plume. Earth Planet Sci Lett 186:15–31. doi:10.1016/s0012-821x(01)00230-8

    Google Scholar 

  • Pritchard ME, Jay JA, Aron F, Henderson ST, Lara LE (2013) Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat Geosci 6:632–636. doi:10.1038/ngeo1855

    Google Scholar 

  • Putirka K, Platt B (2012) Basin and range volcanism as a passive response to extensional tectonics. Geosphere 8:1274–1285. doi:10.1130/ges00803.1

    Google Scholar 

  • Puziewicz J, Koepke J, Grégoire M, Ntaflos T, Matusiak-Małek M (2011) Lithospheric mantle modification during Cenozoic rifting in Central Europe: evidence from the Księginki Nephelinite (SW Poland) Xenolith Suite. J Petrol 52:2107–2145. doi:10.1093/petrology/egr041

    Google Scholar 

  • Renne PR et al (2009) Data reporting norms for 40Ar/39Ar geochronology. Quat Geochronol 4:346–352. doi:10.1016/j.quageo.2009.06.005

    Google Scholar 

  • Richard GC, Iwamori H (2010) Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys Earth Planet Inter 183:280–287. doi:10.1016/j.pepi.2010.02.009

    Google Scholar 

  • Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo volcanic field (Mendoza), Argentina. J Volcanol Geotherm Res 169:61–86. doi:10.1016/j.jvolgeores.2007.08.007

    Google Scholar 

  • Rivalenti G, Mazzucchelli M, Zanetti A, Vannucci R, Bollinger C, Hémond C, Bertotto GW (2007) Xenoliths from Cerro de los Chenques (Patagonia): an example of slab-related metasomatism in the backarc lithospheric mantle. Lithos 99:45–67. doi:10.1016/j.lithos.2007.05.012

    Google Scholar 

  • Ryu S, Oka M, Yagi K, Sakuyama T, Itaya T (2011) K-Ar ages of the quaternary basalts in the Jeongok area, the central part of the Korean Peninsula. Geosci J 15:1–8

    Google Scholar 

  • Sakuyama T et al (2014) Melting of the uppermost metasomatized asthenosphere triggered by fluid fluxing from ancient subducted sediment: constraints from the quaternary basalt lavas at Chugaryeong volcano, Korea. J Petrol 55:499–528. doi:10.1093/petrology/egt074

    Google Scholar 

  • Schellart WP (2007) North-eastward subduction followed by slab detachment to explain ophiolite obduction and early Miocene volcanism in Northland, New Zealand. Terra Nova 19:211–218

    Google Scholar 

  • Schneider B, Kuiper K, Postma O, Wijbrans J (2009) 40Ar/39Ar geochronology using a quadrupole mass spectrometer. Quat Geochronol 4:508–516. doi:10.1016/j.quageo.2009.08.003

    Google Scholar 

  • Scott JM, Waight TE, van der Meer QHA, Palin JM, Cooper AF, Münker C (2014) Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochem, Geophys, Geosys:1–25. doi:10.1002/2014gc005300

  • Seno T (1999) Syntheses of the regional stress fields of the Japanese islands. Island Arc 8:66–79

    Google Scholar 

  • Shen Y, Solomon SC, Bjarnason IT, Wolfe CJ (1998) Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395:62–65

    Google Scholar 

  • Shimoyama S, Kinoshita H, Miyahara M, Tanaka Y, Ichihara T, Takemura K (1999) Mode of vertical crustal movements during the late quaternary in Kyushu, Japan, deduced from heights of ancient shorelines. Tectonophysics 302:9–22. doi:10.1016/S0040-1951(98)00280-7

    Google Scholar 

  • Shin S, Jin M (1995) Isotope age map of volcanic rocks in Korea (1: 1,000,000). Korea Institute of Geology, Mining and Materials, Daejeon

    Google Scholar 

  • Shin YH, Choi KS, Koh J-S, Yun S-H, Nakamura E, Na S-H (2012) Lithospheric-folding-based understanding on the origin of the back-arc basaltic magmatism beneath Jeju volcanic island. Tectonics 31:TC4005. doi:10.1029/2011tc003092

    Google Scholar 

  • Shinjo R, Woodhead JD, Hergt JM (2000) Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contrib Mineral Petrol 140:263–282

    Google Scholar 

  • Sibuet JC et al (1987) Back arc extension in the Okinawa trough. J Geophys Res Solid Earth 92:14041–14063. doi:10.1029/JB092iB13p14041

    Google Scholar 

  • Sibuet JC, Hsu SK, Shyu CT, Liu CS (1995) Structural and kinematic evolution of the Okinawa Trough Backarc Basin. In: Taylor B (ed) Backarc basins: tectonics and magmatism. Plenum Press, New York, pp 343–378

    Google Scholar 

  • Sims KWW, DePaolo DJ, Murrell MT, Baldridge WS, Goldstein S, Clague D, Jull M (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U-230Th-226Ra and 235U-231Pa disequilibria. Geochim Cosmochim Acta 63:4119–4138. doi:10.1016/S0016-7037(99)00313-0

    Google Scholar 

  • Sohn YK, Park KH (2004) Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. Geosci J 8:73–84

    Google Scholar 

  • Sohn YK, Yoon SH (2010) Shallow-marine records of pyroclastic surges and fallouts over water in Jeju Island, Korea, and their stratigraphic implications. Geology 38:763–766. doi:10.1130/G30952.1

    Google Scholar 

  • Sohn YK, Park KH, Yoon SH (2008) Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea. Sedimentol 55:899–924

    Google Scholar 

  • Spörli KB, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179. doi:10.1016/s0377-0273(97)00030-9

    Google Scholar 

  • Steinberger B, Sutherland R, O’Connell RJ (2004) Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430:167–173

    Google Scholar 

  • Sudo M, Uto K, Tatsumi Y, Matsui K (1998) K–Ar geochronology of a quaternary monogenetic volcano group in Ojika Jima District, Southwest Japan. Bull Volcanol 60:171–186. doi:10.1007/s004450050225

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42, Geological society special publication. Geological Society, London, pp 313–345

    Google Scholar 

  • Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian–Pannonian region: a review. Tectonophysics 393:119–137. doi:10.1016/j.tecto.2004.07.031

    Google Scholar 

  • Takada Y, Fukushima Y (2013) Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat Geosci 6:637–641. doi:10.1038/ngeo1857

    Google Scholar 

  • Tang Y et al (2014) Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nat Geosci 7:470–475. doi:10.1038/ngeo2166

    Google Scholar 

  • Tatsumi Y, Shukuno H, Yoshikawa M, Chang Q, Sato K, Lee MW (2005) The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J Petrol 46:523–553

    Google Scholar 

  • Terakawa T, Matsu’ura M (2010) The 3-D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events. Tectonics 29:TC6008. doi:10.1029/2009tc002626

    Google Scholar 

  • Umhoefer PJ, Dorsey RJ, Renne P (1994) Tectonics of the Pliocene Loreto basin, Baja California Sur, Mexico, and evolution of the Gulf of California. Geology 22:649–652. doi:10.1130/0091-7613(1994)022<0649:totplb>2.3.co;2

    Google Scholar 

  • Valentine GA, Hirano N (2010) Mechanisms of low-flux intraplate volcanic fields-Basin and Range (North America) and northwest Pacific Ocean. Geology 38:55–58

    Google Scholar 

  • Valentine G, Perry F (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Google Scholar 

  • Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559:1–27. doi:10.1016/j.tecto.2012.06.006

    Google Scholar 

  • Wallace LM, Ellis S, Miyao K, Miura S, Beavan J, Goto J (2009) Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. Geology 37:143–146. doi:10.1130/g25221a.1

    Google Scholar 

  • Wee S-M (1996) Geochemical characteristics of the quaternary Jungok basalt in Choogaryong rift valley, mid-Korean Peninsula. J Econ Environ Geol 29:171–182

    Google Scholar 

  • Wei W, Xu J, Zhao D, Shi Y (2012) East Asia mantle tomography: new insight into plate subduction and intraplate volcanism. J Asian Earth Sci 60:88–103. doi:10.1016/j.jseaes.2012.08.001

    Google Scholar 

  • Wessel P, Kroenke LW (2000) Ontong Java Plateau and late Neogene changes in pacific plate motion. J Geophys Res Solid Earth 105:28255–28277. doi:10.1029/2000jb900290

    Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Phys 41:863–870

    Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28. doi:10.1016/0377-0273(95)00006-G

    Google Scholar 

  • Yang K, Hidas K, Falus G, Szabó C, Nam B, Kovács I, Hwang B (2010) Relationship between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): evidence from olivine CPO and trace elements. J Geodyn 50:424–440

    Google Scholar 

  • Yoo HJ, Herrmann RB, Cho KH, Lee K (2007) Imaging the three-dimensional crust of the Korean peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions. Bull Seismol Soc Am 97:1002–1011. doi:10.1785/0120060134

    Google Scholar 

  • Yum B-W, Koh D-C, Park K-H, Woo K-S, Kim Y (2007) Recent geological studies and age dating of ground water in Jeju Island. In: Reedman A, Minh NH, Chaimanee N (eds) 44th CCOP annual session. CCOP Technical Secretariat, Cebu, pp 69–77

    Google Scholar 

  • Zou H, Fan Q, Yao Y (2008) U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem Geol 255:134–142

    Google Scholar 

Download references

Acknowledgments

Discussion and comments by Koji Kiyosugi and Szabolcs Harangi helped improve the manuscript. We thank Brian Jicha and an anonymous reviewer for their constructive comments, Ting Wang for proof reading and Paul Wallace for editorial handling. MB, SJC and GK are supported from NZ Ministry of Science and Innovation (formerly FRST) project MAUX0808 “Facing the challenge of Auckland volcanism”, YKS by a National Research Foundation of Korea (NRF) grant (No. 2009-0079427). MB also acknowledges a visiting researcher fellowship from the Earthquake Research Institute (ERI), University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brenna.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenna, M., Cronin, S.J., Kereszturi, G. et al. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. Bull Volcanol 77, 7 (2015). https://doi.org/10.1007/s00445-014-0896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0896-5

Keywords

Navigation