Skip to main content
Log in

Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allard P, Behncke B, D’Amico S, Neri M, Gambino S (2006) Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Sci Rev 78:85–114. doi:10.1016/j.earscirev.2006.04.002

    Article  Google Scholar 

  • Alletti M, Pompilio M, Rotolo SG (2005) Mafic and ultramafic enclaves from Ustica Island lava: inferences on deep magmatic processes. Lithos 84:151–167. doi:10.1016/j.lithos.2005.03.015

    Article  Google Scholar 

  • Aloisi M, Cocina O, Neri G, Orecchio B, Privitera E (2002) Seismic tomography of the crust underneath the Etna volcano, Sicily. Phys Earth Planet Inter 134:139–155. doi:10.1016/S0031-9201(02)00153-X

    Article  Google Scholar 

  • Aloisi M, Mattia M, Monaco C, Pulvirenti F (2011) Magma, faults and gravitational loading at Mt. Etna: the 2002–2003 eruptive period. J Geopyhs Res. doi:10.1029/2010JB007909, in press

  • Andronico D, Branca S, Calvari S, Burton MR, Caltabiano T, Corsaro RA, Del Carlo P, Garfì G, Lodato L, Miraglia L, Muré F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330. doi:10.1007/s00445-004-0372-8

    Article  Google Scholar 

  • Armienti P, Innocenti F, Petrini R, Pompilio M, Villari L (1988) Sub-aphyric alkali basalt from Mt. Etna: inferences on the depth and composition of the source magma. Rend Soc Ital Mineral Petrol 43:877–891

    Google Scholar 

  • Aurisicchio C, Scribano V (1987) Some ultramafic xenoliths from Etna. Rend Soc Ital Mineral Petrol 42:219–224

    Google Scholar 

  • Barberi G, Cocina O, Maiolino V, Musumeci C, Privitera E (2004) Insight into Mt. Etna (Italy) kinematics during the 2002–2003 eruption as inferred by seismic stress and strain tensors. Geophys Res Lett 31, L21614

    Article  Google Scholar 

  • Barclay J, Carmichael ISE (2004) A hornblende basalt from western Mexico: water saturated phase relations constrain a pressure-temperature window of eruptibility. J Petrol 45:485–506. doi:10.1093/petrology/egg091

    Article  Google Scholar 

  • Benz HM, Chouet BA, Dawson PB, Lahr JC, Page RA, Hole JA (1996) Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J Geophys Res 101:8111–8128. doi:10.1029/95JB03046

    Article  Google Scholar 

  • Bonaccorso A et al (eds) (2004) Mt. Etna: volcano laboratory, geophysical monograph series, vol. 143. AGU, Washington, D. C

    Google Scholar 

  • Bottari A, Lo Giudice E, Patané G, Romano R, Sturiale C (1975) L’eruzione etnea del Gennaio-Marzo 1974. Riv Miner Sic 154–156:175–199

    Google Scholar 

  • Cardaci C, Coviello M, Lombardo G, Patané G, Scarpa R (1993) Seismic tomography of Etna volcano. J Volcanol Geotherm Res 56:357–368. doi:10.1016/0377-0273(93)90002-9

    Article  Google Scholar 

  • Chiarabba C, Amato A, Boschi E, Barberi F (2000) Recent seismicity and tomographic modeling at Mount Etna plumbing system. J Geophys Res 105:10923–10938. doi:10.1029/1999JB900427

    Article  Google Scholar 

  • Chiarabba C, De Gori P, Patanè D (2004) The Mt. Etna Plumbing System: the Contribution of Seismic Tomography. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory. Gephys Monogr AGU 143:191–204

  • Clocchiatti R, Condomines M, Guénot N, Tanguy JC (2004) Magma changes at Mount Etna: the 2001 and 2002–2003 eruptions. Earth Planet Sci Lett 226:397–414. doi:10.1016/j.epsl.2004.07.039

    Article  Google Scholar 

  • Corazzato C, Francalanci L, Menna M, Petrone C, Renzulli A, Tibaldi A, Vezzoli L (2008) What controls sheet intrusion in volcanoes? Petrological and structural characters of the Stromboli sheet complex, Italy. J Volcanol Geotherm Res 173:26–54. doi:10.1016/j.jvolgeores.2008.01.006

    Article  Google Scholar 

  • Corsaro RA, Pompilio M (2004a) Magma dynamics in the shallow plumbing system of Mt.Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J Volcanol Geotherm Res 137(1–3):55–71

    Article  Google Scholar 

  • Corsaro RA, Pompilio M (2004b) Buoyancy-controlled eruptions of magmas at Mt. Etna Terra Nova 16:6–22. doi:10.1046/j.1365-3121.2003.00520.x

    Google Scholar 

  • Corsaro RA, Miraglia L, Pompilio M (2007) Petrologic evidence of a complex plumbing system feeding the July-August 2001 eruption of Mt Etna, Sicily, Italy. Bull Volcanol 69:401–421. doi:10.1007/s00445-006-0083-4

    Article  Google Scholar 

  • Corsaro RA, Civetta L, Di Renzo V, Miraglia L (2009a) Petrology of lavas from 2004–05 eruption of Mt. Etna, Italy: inferences on the dynamics of magma in the central conduits plumbing system. Bull. Volcanol 71(7):781–793. doi:10.1007/s00445-009-0264-z

    Article  Google Scholar 

  • Corsaro RA, Métrich N, Allard P, Andronico D, Miraglia L, Fourmentraux C (2009b) The 1974 flank eruption of Mount Etna: an archetype for deep dike-fed eruptions at basaltic volcanoes and a milestone in Etna’s recent history. J Geophys Res 114, B07204. doi:10.1029/2008JB006013

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin Publisher, 464 pp

  • D’Orazio M, Armienti P, Cerretini S (1998) Phenocryst/matrix trace-element partition coefficients for hawaiite-trachyte lavas from the Ellittico volcanic sequence (Mt. Etna, Sicily, Italy). Miner Petrol 64:65–88

    Article  Google Scholar 

  • De Luca G, Filippi L, Patanè G, Scarpa R, Vinciguerra S (1997) Three-dimensional velocity structure and seismicity of Mount Etna volcano, Italy. J Volcanol Geotherm Res 79:123–138. doi:10.1016/S0377-0273(97)00026-7

    Article  Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343. doi:10.1093/petrology/egl011

    Article  Google Scholar 

  • Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2012) Regimes of magma recharge and their control on the eruptive behaviour during the 2001–2005 period at Mt. Etna (Italy). Bull Volcanol 74:533–543

    Article  Google Scholar 

  • Gebrande H, Kern H, Rummel F (1982) Elasticity and inelasticity. In: Hellwege KH (ed) Landolt-Bornstein numerical data and functional relationship in science and technology. New series, group V: Geophys Space Res, vol. 1, physical properties of rocks, subvolume b. Springer, Berlin, pp 1–233

    Google Scholar 

  • Grapes RH, Wysoczanski RJ, Hoskin PW (2003) Rhonite paragenesis in pyroxenite xenoliths, Mont Sidley volcano, Marie Byrd Land, West Antarctica. Mineral Mag 67(4):639–651. doi:10.1180/0026461036740123

    Article  Google Scholar 

  • Hirn A, Nercessian A, Sapin M, Ferrucci F, Wittlinger G (1991) Seismic heterogeneity of Mt. Etna: structure and activity. Geophys J Int 105:139–153. doi:10.1111/j.1365-246X.1991.tb03450.x

    Article  Google Scholar 

  • Holness MB, Anderson AT, Martin V, Maclennan J, Passmore E, Schwindinger K (2007) Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J Petrol 48(7):1243–1264. doi:10.1093/petrology/egm016

    Article  Google Scholar 

  • Huckenholz HG, Kunzmann T, Spicker C (1988) Stability of titanian magnesio-hastingsite and its breakdown to rhönite-bearing assemblages. Terra Cognita 8:66

    Google Scholar 

  • Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101

    Article  Google Scholar 

  • Kozlovskaya E, Elo S, Hjelt SE, Yliniemi J, Pirttijarvi M, SVEKALAPKO Seismic Tomography Working Group (2004) 3-D density model of the crust of southern and central Finland obtained from joint interpretation of the SVEKALAPKO crustal P-waves velocity models and gravity data. Geophys J Int 158:827–848. doi:10.1111/j.1365-246X.2004.02363.x

    Article  Google Scholar 

  • Kunzmann T (1989) Rhönit: mineralchemie, paragenese und stabilitat in alkalibasaltischen vulkaniten. Ein beitrag zur minerogenese der Rhönit-anigmatit-mischkristallgruppe. PhD dissertation, Ludvig-Maximillians University, Munich

  • Laigle M, Hirn A (1999) Explosion-seismic tomography of a magmatic body beneath Etna: volatile discharge and tectonic control of volcanism. Geophys Res Lett 26(17):2665–2668. doi:10.1029/1998GL005300

    Article  Google Scholar 

  • Laigle M, Hirn A, Sapin M, Lepine JC, Diaz J, Gallart J, Nicolich R (2000) Mount Etna dense array local earthquake P and S tomography and implications for volcanic plumbing. J Geophys Res 105(B9):21623–21646. doi:10.1029/2000JB900190

    Article  Google Scholar 

  • Laiolo M, Cigolini C (2006) Mafic and ultramafic xenoliths in San Bartolo lava field: new insights on the ascent and storage of Stromboli magmas. Bull Volcanol 68:653–670

    Article  Google Scholar 

  • Le Maitre RW (ed) (2002) A classification of igneous rocks and glossary of terms. Recommendations of the IUGS subcommission on the systematics of the igneous rocks. Cambridge University Press

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Lees JM (1992) The magma system of Mount St. Helens: non linear high-resolution P-wave tomography. J Volcanol Geotherm Res 53:103–116. doi:10.1016/0377-0273(92)90077-Q

    Article  Google Scholar 

  • Lo Giudice A, Ritmann L (1975) Su alcune accumuliti etnee: aspetti mineralogici e genetici. Riv Mineraria Sicil 26:1–12

    Google Scholar 

  • Marsh BD (1996) Solidification fronts and magmatic evolution. Mineral Mag 60:5–40

    Article  Google Scholar 

  • Marsh BD (2000) Magma chambers. In: Sigurdsson et al. (eds) Encyclopedia of volcanoes. Academic Press, pp 191–206

  • Mattioli M, Serri G, Salvioli-Mariani E, Renzulli A, Holm PM, Santi P, Venturelli G (2003) Sub-volcanic infiltration and syn-eruptive quenching of liquids in cumulate wall-rocks: the example of the gabbroic nodules of Stromboli (Aeolian Islands, Italy). Miner Petrol 78:201–230. doi:10.1007/s00710-002-0232-1

    Article  Google Scholar 

  • Métrich N, Allard P, Spilliaert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet Sci Lett 228:1–17. doi:10.1016/j.epsl.2004.09.036

    Article  Google Scholar 

  • Miraglia L (2002) Evidence for heterogeneous magmas in the feeding system of the 1763 “La Montagnola” eruption at Mount Etna. Plinius 27:108–112

    Google Scholar 

  • Nicotra E, Viccaro M (2012) Unusual magma storage conditions at Mt. Etna (Southern Italy) as evidenced by the emission of plagioclase megacryst-bearing lavas: implications for the volcano plumbing system. Bull Volcanol 74:795–815

    Article  Google Scholar 

  • Okubo PG, Benz HM, Chouet BA (1997) Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology 25:867–870. doi:10.1130/0091-7613(1997)025<0867:ITCMSB>2.3.CO;2

    Article  Google Scholar 

  • Patanè D, Chiarabba C, Cocina O, De Gori P, Moretti M, Boschi E (2002) Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: evidence for a dyke intrusion. Geophys Res Lett 29:10

    Article  Google Scholar 

  • Patané D, De Gori P, Chiarabba C, Bonaccorso A (2003) Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299:2061–2063. doi:10.1126/science.1080653

    Article  Google Scholar 

  • Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313:821–823. doi:10.1126/science.1127724

    Article  Google Scholar 

  • Pompilio M, Rutherford MJ (2002) Pre-eruption conditions and magma dynamics of recent amphiboles-bearing Etna basalt. Eos Trans AGU 82(47):F1412

    Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Ragland PC (1989) Basic analytical petrology. Oxford Univ Press, New York, 369 p

    Google Scholar 

  • Renzulli A, Santi P (1997) Sub-volcanic crystallization at Stromboli (Aeolian Islands, Southern Italy) preceding the Sciara del Fuoco sector collapse: evidence from monzonite lithic-suite. Bull Volcanol 59:10–20

    Article  Google Scholar 

  • Rittmann A (1965) Notizie sull’Etna. Supplemento al Nuovo Cimento 3(I):1117–1123

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. doi:10.2138/am.2005.1449

    Article  Google Scholar 

  • Rollin PJ, Cassidy J, Locke CA, Rymer H (2000) Evolution of the magmatic plumbing system at Mt Etna: new evidence from gravity and magnetic data. Terra Nova 12:193–198. doi:10.1046/j.1365-3121.2000.00285.x

    Article  Google Scholar 

  • Schiavone D, Loddo M (2007) 3-D density model of Mt. Etna volcano (Southern Italy). J Volcanol Geotherm Res 164:161–175

    Article  Google Scholar 

  • Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111, B04203. doi:10.1029/2005JB003934

    Article  Google Scholar 

  • Stormer JC, Nicholls J (1978) XLFRAC a programme for interactive testing of magmatic differentiation models. Comp Geosci 4:143–159

    Article  Google Scholar 

  • Sturiale C (1970) La singolare eruzione dell’Etna del 1763 “La Montagnola”. Boll Mineral Rend Soc Ital Mineral Petrol 26:314–351

    Google Scholar 

  • Tanguy JC, Kieffer G (1977) The 1974 eruption of Mount Etna. Bull Volcanol 40(4):239–252. doi:10.1007/BF02597566

    Article  Google Scholar 

  • Tibaldi A, Corazzato C, Marani M, Gamberi F (2009) Subaerial-submarine evidence of structures feeding magma to Stromboli Volcano, Italy, and relations with edifice flank failure and creep. Tectonophysics 469:112–136

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2006) Magma mixing during the 2001 event at Mount Etna (Italy): effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cristofolini R (2007) Amphibole crystallization in the Etnean feeding system: mineral chemistry and trace element partitioning between Mg-hastingsite and alkali basaltic melt. Eur J Mineral 19:499–511. doi:10.1127/0935-1221/2007/0019-1747

    Article  Google Scholar 

  • Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91

    Article  Google Scholar 

  • Villaseñor A, Benz HM, Filippi L, De Luca G, Scarpa R, Patanè G, Vinciguerra S (1998) Three-dimensional P-wave velocity structure of Mt. Etna, Italy. Geophys Res Lett 25(11):1975–1978. doi:10.1029/98GL01240

    Article  Google Scholar 

Download references

Acknowledgments

This study was initiated thanks to G. Amendolia, geologist and volcanological guide, who collected many of the samples. We are also greatly indebted to V. Scribano for fruitful discussion and for having provided the sample XET. M. Viccaro and an anonymous reviewer greatly improved the clarity of this paper with helpful and thoughtful suggestions. We also wish to thank M.A. Clynne and two anonymous reviewers for their helpful comments on an early version of this manuscript. We are grateful to Graziella Barberi for the elaboration of the tomograms and to A. Cavallo for the assistance during EMPA measurements. Lucia Messina is thanked for rock powder preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Anna Corsaro.

Additional information

Editorial responsibility: G. Giordano

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table A (supplementary material)

Selected amphibole (Mg-Hastingsite) analyses in cognate xenoliths of AMGB, AMMG and AMLG groups. Mineral formulae (apfu=atoms per formula unit) were calculated by normalizing the sum of tetrahedral (Si, Ti, Al) plus octahedral (Al, Ti, Cr, Fe, Mn, Mg) cations to 13 (Leake et al. 1997). (DOC 57 kb)

Table B (supplementary material)

Mean rhonite analyses (n=3 analyses) in amphibole breakdown coronas. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corsaro, R.A., Rotolo, S.G., Cocina, O. et al. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano. Bull Volcanol 76, 772 (2014). https://doi.org/10.1007/s00445-013-0772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0772-8

Keywords

Navigation