Skip to main content
Log in

Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Google Scholar 

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624. doi:10.1029/2001GL013393

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1989) The intensity of plinian eruptions. Bull Volcanol 51(1):28–40. doi:10.1007/BF01086759

    Article  Google Scholar 

  • Elsworth D, Mattioli G, Taron J, Voight B, Herd R (2008) Implications of magma transfer between multiple reservoirs on eruption cycling. Science 322(5899):246–248. doi:10.1126/science.1161297

    Article  Google Scholar 

  • Formenti Y, Druitt TH (2003) Vesicle connectivity in pyroclasts and implications for the fuidisation of fountain-collapse pyroclastic flows, Montserrat (West Indies). Earth Planet Sci Lett 214(3–4):561–574. doi:10.1016/S0012-821X(03)00386-8

    Article  Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70(1):1–22. doi:10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Hashimoto A, Shimbori T, Fukui K (2012) Tephra fall simulation for the eruptions at Mt. Shinmoe-dake during 26–27 January 2011 with JMANHM. SOLA 8:37–40. doi:10.2151/sola.2012-010

    Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT/GLOBK release 10.4. Mass Inst of Technol Cambridge

  • Imura R, Kobayashi T (1991) Eruptions of Shinmoedake volcano, Kirishima volcano group in the last 300 years. Kazan 36(2):135–148 (in Japanese with English abstract)

    Google Scholar 

  • Kozono T, Koyaguchi T (2012) Effects of gas escape and crystallization on the complexity of conduit flow dynamics during lava dome eruptions. J Geophys Res 117(B8):B08204. doi:10.1029/2012JB009343

    Article  Google Scholar 

  • Kueppers U, Scheu B, Spieler O, Dingwell DB (2005) Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from Unzen volcano, Japan. J Volcanol Geotherm Res 141(1–2):65–75. doi:10.1016/j.jvolgeores.2004.09.005

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143(1–3):219–235. doi:10.1016/j.jvolgeores.2004.09.019

    Article  Google Scholar 

  • Maeno F, Nagai M, Nakada S, Burden R, Engwell S, Suzuki Y, Kaneko T (2012) Constraining tephra dispersion and deposition from cyclic subplinian explosions at Shinmoedake volcano, Kyushu, Japan, 2011. Abst Japan Geoscience Union Meet SVC50-07

  • Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1):53–68. doi:10.1016/j.jvolgeores.2004.09.010

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthquake Res Inst Univ Tokyo 36:99–134

    Google Scholar 

  • Newhall CG, Melson WG (1983) Explosive activity associated with the growth of volcanic domes. J Volcanol Geotherm Res 17(1–4):111–131. doi:10.1016/0377-0273(83)90064-1

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82(2):1018–1040

    Google Scholar 

  • Sasaki H, Isobe K, Homma S, Sakagami M, Mukoyama S, Nakada S, Kobayashi T, Murakami R (2011) Estimation of lava volume using oblique aerial photo in Shinmoedake Volcano. Programme and abstracts the Volcanol Soc Japan: A1-13

  • Sato H, Takahashi H, Yamamoto E, Fukuo N, Uehara M, Terasawa Y (1980) Development of the crustal tilt observation method using borehole-type tiltmeters. Zisin 33:343–368 (in Japanese with English abstract)

    Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton Univ Pr

  • Shimbori T, Fukui K (2012) Time variation of the eruption cloud echo height from Shinmoe-dake volcano in 2011 observed by Tanegashima and Fukuoka weather radars: Part II. Rep Coordinating Comm Prediction of Volcanic Eruption 109:173–178

    Google Scholar 

  • Slezin YB (2003) The mechanism of volcanic eruptions (a steady state approach). J Volcanol Geotherm Res 122(1–2):7–50. doi:10.1016/S0377-0273(02)00464-X

    Article  Google Scholar 

  • Suzuki YJ, Koyaguchi T (2010) Numerical determination of the efficiency of entrainment in volcanic eruption columns. Geophys Res Lett 37(5):L05302. doi:10.1029/2009GL042159

    Article  Google Scholar 

  • Ueda H, Fujita E, Ukawa M, Yamamoto E, Irwan M, Kimata F (2005) Magma intrusion and discharge process at the initial stage of the 2000 activity of Miyakejima, Central Japan, inferred from tilt and GPS data. Geophys J Int 161(3):891–906. doi:10.1111/j.1365-246X.2005.02602.x

    Article  Google Scholar 

  • Ueda H, Fujita E, Ukawa M, Yamamoto E (2010) Automated technique for anomalous volcanic crustal deformation detection and source estimation by using real time tiltmeter data. Rep NIED 76:21–32 (in Japanese with English abstract)

    Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. doi:10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models: application to Mt. Etna and radar interferometry. Geophys Res Lett 25(10):1549–1552. doi:10.1029/98GL01136

    Article  Google Scholar 

  • Woods AW (1988) The fluid dynamics and thermodynamics of eruption columns. Bull Volcanol 50(3):169–193. doi:10.1007/BF01079681

    Article  Google Scholar 

  • Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Nature 370(6491):641–644. doi:10.1038/370641a0

    Article  Google Scholar 

  • Yang X, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res 93(B5):4249–4257. doi:10.1029/JB093iB05p04249

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Motoo Ukawa, Toshikazu Tanada, Masashi Nagai, Eiji Yamamoto, Yuhki Kohno, Yousuke Miyagi, Masayo Kikuchi, and other colleagues of NIED for construction and maintenance of V-net. We also acknowledge Toshiki Shimbori and Keiichi Fukui for providing eruption cloud echo data. We thank the associate editor Sonia Calvari and two anonymous reviewers for insightful comments and suggestions that greatly improved the manuscript. GSI of Japan is acknowledged for providing GPS data of GEONET and digital maps. Part of this study was supported by the Special Coordination Funds for Promoting Science and Technology from MEXT (“Urgent study on the 2011 eruption of Kirishima-Shinmoe-dake volcano”), JSPS KAKENHI Grant Number 24244069, and the Earthquake Research Institute cooperative research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomofumi Kozono.

Additional information

Editorial responsibility: S. Calvari

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozono, T., Ueda, H., Ozawa, T. et al. Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations. Bull Volcanol 75, 695 (2013). https://doi.org/10.1007/s00445-013-0695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0695-4

Keywords

Navigation