Skip to main content
Log in

Peraluminous igneous rocks as an indicator of thermogenic methane release from the North Atlantic Volcanic Province at the time of the Paleocene–Eocene Thermal Maximum (PETM)

  • Short Scientific Communication
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Unusual cordierite-bearing peraluminous dacites, produced by melting of organic-rich sediments by intrusion of basaltic magma, are found within the North Atlantic Volcanic Province (NAVP). Calculations suggest that formation of the dacites, radiometric dated at 55.9 ± 0.3 Ma and possibly widespread, could have released an average of ∼4,500 Gt (range from 3,000 to 6,000 Gt) of carbon as methane, with a δ13C of about −35‰. Published model results suggest that such a methane release could explain the negative δ13C excursion in the oceans and atmosphere, the extreme global warming, and the marked dissolution of carbonates in the deep oceans that accompanied the concurrent Paleocene–Eocene Thermal Maximum (PETM). Outgassing from melting of sediments and formation of dacites, possibly in conjunction with methane produced in contact metamorphic aureoles and by methane hydrate release, provides a novel way of explaining the PETM and its timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Boulter MC, Manum SB (1989) The Brito-Arctic igneous province flora around the Paleocene/Eocene boundary. In: Eldholm O, et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 104, 663–680

  • Carozza DA, Mysak LA, Schmidt GA (2011) Methane and environmental change during the Paleocene–Eocene thermal maximum (PETM): modeling the PETM onset as a two-stage event. Geophys Res Lett 38:L05702

    Article  Google Scholar 

  • Colosimo A, Bralower TJ, Zachos JC (2006) Evidence for lysocline shoaling at the Paleocene–Eocene Thermal Maximum on Shatsky Rise, Northwest Pacific In: Bralower T, et al. (eds), Proceedings of the ocean drilling program Scientific Results 198, 1–36

  • Crouch EM, Heilmann-Clausen C, Brinkhuis H, Morgans HEG, Rogers KM, Egger H, Schmitz B (2001) Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29:315–318

    Article  Google Scholar 

  • DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Beerling DJ (2012) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:87–92

    Article  Google Scholar 

  • Dickens GR, O’Neil JR, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanog 10:965–971

    Article  Google Scholar 

  • Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262

    Article  Google Scholar 

  • Egger H, Heilmann-Clausen C, Schmitz B (2000) The Paleocene/Eocene boundary interval of a Tethyan deep-sea section (Austria) and its correlation with the North Sea basin. Bull Soc Geol France 171:207–216

    Article  Google Scholar 

  • Eldholm O, Thomas E (1993) Environmental impact of volcanic margin formation. Earth Planet Sci Lett 117:319–329

    Article  Google Scholar 

  • Galeotti S, Krishnan S, Pagani M, Lanci L, Gaudio A, Zachos JC, Monechi S, Morelli G, Lourens L (2010) Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planet Sci Lett 290:192–200

    Article  Google Scholar 

  • Gatliff RW, Hitchen K, Ritchie JD, Smythe DK (1984) Internal structure of the Erland Tertiary volcanic complex, north of Scotland, revealed by seismic reflection. Jour Geol Soc Lond 141:555–562

    Article  Google Scholar 

  • Hegerl GC et al (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032

    Article  Google Scholar 

  • Hitchen K, Stoker MS (1993) Mesozoic rocks from the Hebrides Shelf and implications for hydrocarbon prospectivity in the northern Rockall Trough. Marine Petrol Geol 10:248–254

    Article  Google Scholar 

  • Hinz K, Mutter JC, Zehnder CM, The NGT Study Group (1987) Symmetric conjugation of continent–ocean boundary structures along the Norwegian and East Greenland Margins. Marine Petrol Geol 4:166–187

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. Jour Petrol 29:599–624

    Article  Google Scholar 

  • Isaksen GH, Wilkinson DR, Hitchen K (2000) Geochemistry of organic-rich Cretaceous and Jurassic mudstones in the West Lewis and West Flannan basins, offshore north-west Scotland: implications for source rock presence in the north-east Rockall Trough. Marine Petrol Geol 17:27–42

    Article  Google Scholar 

  • Joppen M, White RS (1990) The structure and subsidence of Rockall Trough from two-ship seismic experiments. Jour Geophys Res 95(19):821, 837

    Google Scholar 

  • Kanaris-Sotiriou R, Morton AC, Taylor PN (1993) Palaeogene peraluminous magmatism, crustal melting and continental break-up: the Erlend complex, Faeroe-Shetland Basin, NE Atlantic. Jour Geol Soc Lond 150:903–914

    Article  Google Scholar 

  • LeHuray AP, Johnson ES (1989) Rb-Sr systematics of Site 642 volcanic rocks and alteration minerals. In: Eldholm O, et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 104: 437–448

  • Lipinski M, Warning B, Brumsack H-J (2003) Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeogr Palaeoclimatol Palaeoecol 190:459–475

    Google Scholar 

  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Rohl E, Bowles J, Raffi I (2005) Astronomical pacing of Late Paleocene to Early Eocene global warming events. Nature 435:1083–1087

    Article  Google Scholar 

  • Miles A, Cartwright J (2010) Hybrid flow sills: a new mode of igneous sheet intrusion. Geology 38:343–346

    Article  Google Scholar 

  • Morton AC, Dixon JE, Fitton JG, Macintyre RM, Smythe DK, Taylor PN (1988) Early Tertiary volcanic rocks in Well 163/6-1A, Rockall Trough. Geol Soc Lond Spec Pub 39:293–308

    Article  Google Scholar 

  • Murphy B, Lyle M, Olivarez-Lyle A (2006) Biogenic burial across the Paleocene–Eocene boundary: Ocean Drilling Program Site 1221 In: Wilson PA, et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results. 199:

  • Pagani M, Caldeira K, Archer D, Zachos JC (2006) An ancient carbon mystery. Science 314:1556–1557

    Article  Google Scholar 

  • Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36:315–318

    Article  Google Scholar 

  • Parson LM, Viereck LG, Love D, Gibson I, Morton AC, Hertogen J (1989) The petrology of the Lower Series volcanics, ODP site 642. In: Eldholm O, Thiede J, Taylor E, et al. (1989) Proceedings of the Ocean Drilling Program, Scientific Results 104B: 993–1030

  • Saunders AD, Fitton JG, Kerr AC, Norry MJ, Kent RW (1997) The North Atlantic Igneous Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces, Geophys Monogr 100: 45–93. Amer Geophys Union, Washington DC

    Google Scholar 

  • Sexton PF, Norris RD, Wilson PA, Palike H, Westerhold T, Rohl U, Bolton C, Gibbs S (2011) Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471:349–353

    Article  Google Scholar 

  • Sinton CW, Hitchen K Duncan, RA (1998) Ar-40-Ar-39 geochronology of silicic and basic volcanic rocks on the margins of the North Atlantic. Geol Mag 135:161–171

    Google Scholar 

  • Skogseid J, Pedersen T, Eldholm O, Larsen BJ (1992) Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin. Geol Soc Lond Spec Pub 68:305–320

    Article  Google Scholar 

  • Storey M, Duncan RA, Swisher C (2007) Paleocene–Eocene Thermal Maximum and the opening of the Northeast Atlantic. Science 316:587–589

    Article  Google Scholar 

  • Svensen H, Planke S, Malthe-Sørenssen A, Jamtvelt B, Myklebust R, Eldem TR, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545

    Article  Google Scholar 

  • Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohanty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene/Eocene thermal maximum. Geology 30:1067–1070

    Article  Google Scholar 

  • Viereck LG, Taylor PN, Parson LM, Morton LM, Hertogen J, Gibson IL, ODP Leg 104 Scientific Party (1988) Origin of the Palaeogene Vøring Plateau volcanic sequence. Geol Soc Lond Spec Pub 39:69–83

    Article  Google Scholar 

  • Zeebe RE, Zachos JC, Dickens GR (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci 2:576–580

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to S. Self, Th. Thordarson, H. Svensen, A. Miles, and S. Galeotti for careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rampino.

Additional information

Editorial responsibility: T. Thordarson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rampino, M.R. Peraluminous igneous rocks as an indicator of thermogenic methane release from the North Atlantic Volcanic Province at the time of the Paleocene–Eocene Thermal Maximum (PETM). Bull Volcanol 75, 678 (2013). https://doi.org/10.1007/s00445-012-0678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-012-0678-x

Keywords

Navigation