Skip to main content
Log in

Combining relative and absolute gravity measurements to enhance volcano monitoring

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

To achieve a balance between uncertainty and efficiency in gravity measurements, we have investigated the applicability of combined measurements of absolute and relative gravity as a hybrid method for volcano monitoring. Between 2007 and 2009, three hybrid gravity surveys were conducted at Mt Etna volcano, in June 2007, July 2008, and July 2009. Absolute gravity data were collected with two absolute gravimeters, which represent the state of the art in recent advances in ballistic gravimeter technology: (1) the commercial instrument FG5#238 and (2) the prototype instrument IMGC-02. We carried out several field surveys and confirmed that both the absolute gravimeters can still achieve a 10 μGal or better uncertainty even when they are operated in severe environmental conditions. The use of absolute gravimeters in a field survey of the summit area of Mt Etna is unprecedented. The annual changes of the gravity measured over 2007–2008 and 2008–2009 provide unequivocal evidence that during the 2007–2009 period, two main phenomena of subsurface mass redistribution occurred in distinct sectors of the volcano, accompanying different eruptive episodes. From 2007 to 2008, a gravity change of −60 μGal was concentrated around the North-East Rift. This coincided with a zone affected by strong extensional tectonics, and hence might have been related to the opening of new voids. Between 2008 and 2009, a North-South elongate feature with a maximum gravity change of +80 μGal was identified in the summit craters area. This is interpreted to indicate recharge of a deep-intermediate magma storage zone, which could have occurred when the 2008–2009 eruption was still ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloisi M, Bonaccorso A, Cannavò F, Gambino S, Mattia M, Puglisi G, Boschi E (2009) A new dyke intrusion style for the Mount Etna May 2008 eruption modelled through continuous tilt and GPS data. Terra Nova 21(4):316–321

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Scollo A (2008) The 4–5 September 2007 lava fountain at South–East Crater of Mt Etna. Italy J Volcanol Geotherm Res 173:325–328. doi:10.1016/j.jvolgeores.2008.02.004

    Article  Google Scholar 

  • Battaglia M, Segall P, Roberts C (2003) The mechanics of unrest at Long Valley Caldera, California. Constraining the nature of the source using geodetic and micro-gravity data. J Volcanol Geotherm Res 127:219–245

    Article  Google Scholar 

  • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the cause of unrest at Campi Flegrei caldera (Italy): Geoph. Res Lett 33. doi:10.1029/2005GL024904

  • Berrino G (2000) Combined gravimetry in the observation of volcanic processes in Southern Italy. J Geodynam 30:371–388

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, New York, 1995

    Book  Google Scholar 

  • Bonaccorso A, Cianetti S, Giunchi C, Trasatti E, Bonafede M, Boschi E (2005) Analytical and 3-D numerical modelling of Mt. Etna (Italy) volcano inflation. Geophys J Int 163:852–862. doi:10.1111/j.1365-246X.2005.02777.x

    Article  Google Scholar 

  • Bonaccorso A, Bonforte A, Currenti G, Del Negro C, Di Stefano A, Greco F (2011a) Magma storage, eruptive activity and flank instability: inferences from ground deformation and gravity changes during the 1993-2000 recharging of Mt. Etna volcano. J Volcanol Geotherm Res 200:245–254

    Article  Google Scholar 

  • Bonaccorso A, Cannata A, Corsaro RA, Di Grazia G, Gambino S, Greco F, Miraglia L, Pistorio A (2011b) Multidisciplinary investigation on a lava fountain preceding a flank eruption: the 10 May 2008 Etna case. Geochem Geophys Geosyst 12:Q07009. doi:10.1029/2010GC003480

    Article  Google Scholar 

  • Bonaccorso A, Bonforte A, Calvari S, Del Negro C, Di Grazia G, Ganci G, Neri M, Vicari A, Boschi E (2011c) The initial phases of the 2008–2009 Mount Etna eruption: a multidisciplinary approach for hazard assessment. J Geophys Res 116:B03203. doi:10.1029/2010JB007906

    Article  Google Scholar 

  • Bonafede M, Mazzanti M (1998) Modelling gravity variations consistent with ground deformation in the Campi Flegrei Caldera (Italy). J Volcanol Geotherm Res 81:137–157

    Article  Google Scholar 

  • Bonforte A, Puglisi G (2003) Magma uprising and flank dynamics on Mount Etna volcano, studied using GPS data (1994–1995). J Geophys Res 108(B3):2153. doi:10.1029/2002JB001845

    Article  Google Scholar 

  • Bonforte A, Puglisi G (2006) Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network. J Volcanol Geotherm Res 153:357–369. doi:10.1016/j.jvolgeores.2005.12.005

    Article  Google Scholar 

  • Bonforte A, Carbone D, Greco F, Palano M (2007a) Intrusive mechanism of the 2002 NE-rift eruption at Mt Etna (Italy) modelled using GPS and gravity data. Geophys J Int 169:339–347

    Article  Google Scholar 

  • Bonforte A, Gambino S, Guglielmino F, Obrizzo F, Palano M, Puglisi G (2007b) Ground deformation modeling of the flank dynamics prior to the 2002 eruption of Mt. Etna Bull Volcanol 69:757–768. doi:10.1007/s00445-006-0106-1

    Article  Google Scholar 

  • Bonforte A, Bonaccorso A, Guglielmino F, Palano M, Puglisi G (2008) Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J Geophys Res 113:B05406. doi:10.1029/2007JB005334

    Article  Google Scholar 

  • Bonforte A, Guglielmino F, Puglisi G (2011) 3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method. Fringe 2011 Workshop, Frascati, 19-23 September 2011

  • Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231–235

    Article  Google Scholar 

  • Budetta G, Grimaldi M, Luongo G (1989) Variazioni di gravità nell’area etnea (1986–1989). Boll GNV 5:137–146

    Google Scholar 

  • Budetta G, Carbone D, Greco F (1999) Subsurface mass redistributions at Mount Etna (Italy) during the 1995–96 explosive activity detected by microgravity studies. Geoph J Int 138:77–88

    Article  Google Scholar 

  • Carbone D, Greco F (2007) Review of microgravity observations at Mt. Etna: a powerful tool to monitor and study active volcanoes. Pure Appl Geophys 164:1–22

    Article  Google Scholar 

  • Carbone D, Budetta G, Greco F (2003) Bulk processes some months before the start of the 2001 Mt Etna eruption, evidenced through microgravity studies. J Geophys Res 108(B12):2556

    Article  Google Scholar 

  • Charco M, Camacho AG, Tiampo KF, Fernandez J (2009) Spatiotemporal gravity changes on volcanoes: assessing the importance of topography. Geophys Res Lett 36:L08306. doi:10.1029/2009GL037160

    Article  Google Scholar 

  • Clark DA, Saul SJ, Emerson DW (1986) Magnetic and gravity anomaly of a triaxial ellipsoid. Expl Geophys 17:189–200

    Article  Google Scholar 

  • Currenti G, Del Negro C, Ganci G (2007) Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano. Geophys J Int. doi:10.1111/j.1365-246X.2007.03380.x

  • Currenti G, Napoli R, Del Negro C (2011a) Toward a realistic deformation model of the 2008 magmatic intrusion at Etna from combined DInSAR and GPS observations. Earth Planet Sci Lett 312:22–27. doi:10.1016/j.epsl.2011.09.058

    Article  Google Scholar 

  • Currenti G, Napoli R, Di Stefano A, Greco F, Del Negro C (2011b) 3D integrated geophysical modeling for the 2008 magma intrusion at Etna: constraints on rheology and dike overpressure. Phys Earth Planet Int 185:44–52

    Article  Google Scholar 

  • D'Agostino G, Desogus S, Germak A, Origlia C, Quagliotti D, Berrino G, Corrado G, Ricciardi G (2008) The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals Geophys 51(1):39–49

    Google Scholar 

  • Ferguson JF, Klopping FJ, Chen T, Seibert JE, Hare JL, Brady JL (2008). The 4D microgravity method for waterflood surveillance: Part III 4D absolute microgravity surveys at Prudhoe Bay, Alaska: Geophysics. 73–6, WA163-WA171

  • Froger JL, Merle O, Briole P (2001) Active spreading and regional extension at Mount Etna imaged by SAR interferometry. Earth Planet Sci Lett 187:245–258

    Article  Google Scholar 

  • Furuya M, Okubo S, Sun W, Tanaka Y, Oikawa J, Watanabe H, Maekawa T (2003) Spatiotemporal gravity changes at Miyakejima volcano: Japan: Caldera collapse, explosive eruptions and magma movement. J Geophys Res 108. doi:10.1029/2002JB001989

  • Greco F, Currenti G, Del Negro C, Napoli R, Budetta G, Fedi M, Boschi E (2010) Spatiotemporal gravity variations to look deep into the southern flank of Etna volcano. J Geophys Res 115:B11411. doi:10.1029/2009JB006835

    Article  Google Scholar 

  • Jiang Z, Francis O, Vitushkin L, Palinkas V, Germak A, Becker M, D'agostino G, Amalvict M, Bayer R, Bilker-Koivula M, Desogus S, Faller J, Falk R, Hinderer J, Gagnon C, Jakob T, Kalish E, Kostelecky J, Chiungwu L, Liard J, Lokshyn Y, Luck B, Makinen J, Mizushima S, Le Moigne N, Origlia C, Pujo ER, Richard P, Robertsson L, Ruess D, Schmerge D, Stus Y, Svitlov S, Thies S, Ullrich C, Van Camp M, Vitushkin A, Ji W, Wilmes H (2011) Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005). Metrologia 48(5):246–260. doi:10.1088/0026-1394/48/5/003

    Article  Google Scholar 

  • Kuo JT, Ottaviani M, Singh SK (1969) Variations of vertical gravity gradient in New York City and Alpine, New Jersey. Geophysics 34:235–248

    Article  Google Scholar 

  • Lo Giudice E, Rasà R (1992) Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example. Tectonophysics 202:257–268

    Article  Google Scholar 

  • Napoli R, Currenti G, Del Negro C, Greco F, Scandura D (2008) Volcanomagnetic evidence of the magmatic intrusion on 13th May 2008 Etna eruption. Geophys Res Lett 35:L22301. doi:10.1029/2008GL035350

    Article  Google Scholar 

  • Pistorio A, Greco F, Currenti G, Napoli R, Sicali A, Del Negro C, Fortuna L (2011) High precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy). Annals Geophys 54:5. doi:10.4401/ag-5348

    Google Scholar 

  • Puglisi G, Bonforte A (2004) Dynamics of Mt Etna volcano inferred from static and kinematic GPS measurements. J Geophys Res 109(B11):B11404. doi:10.1029/2003JB002878

    Article  Google Scholar 

  • Rymer H (1994) Microgravity changes as a precursor to volcanic activity. J Volcanol Geotherm Res 61:311–328

    Article  Google Scholar 

  • Schiavone D, Loddo M (2007) 3-D density model of Mt. Etna Volcano (Southern Italy). J Volcanol Geotherm Res 164:161–175

    Article  Google Scholar 

  • Spilliaert N, Allard P, Metrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203. doi:10.1029/2005JB003934

    Article  Google Scholar 

  • Vitushkin L, Jiang Z, Robertsson L, Becker M, Francis O, Germak A, D'agostino G, Palinkas V, Amalvict M, Bayer R (2010) Results of the Seventh International Comparison of Absolute Gravimeters ICAG-2005 at the Bureau International des Poids et Mesures, Sèvres. In: Springer Heidelberg Dordrecht London New York. Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia (GGEO), 2010,. vol. 135-1, p. 47-53, CRETE: Stelios P. P. Mertikas, ISBN/ISSN: 978-3-642-10633-0/0939-9585, doi: 10.1007/978-3-642-10634-7_7

  • Walsh JB, Rice JR (1979) Local changes in gravity resulting from deformation. J Geophys Res 84:165–170

    Article  Google Scholar 

  • Williams-Jones G, Rymer H (2002) Detecting volcanic eruption precursors: a new method using gravity and deformation measurements. J Volcanol Geotherm Res 113:379–389

    Article  Google Scholar 

  • Yoshida S, Seta G, Okubo S, Kobayashi S (1999) Absolute gravity change associated with the March 1997 earthquake swarm in the Izu Peninsula, Japan. Earth Planets Space 51:3–12

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Eni S.p.a., Exploration & Production Division for providing the FG5#238 absolute gravimeter and Scintrex CG5#08064041 relative gravimeter and sponsoring this study. We also thank S. Dorizon, S. Liaigre, and S. Maucourant from EOST, Strasbourg, France for field data collection. This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by DIEES-UNICT and INGV-CT. Comments by the editors J.D.L. White and S. De la Cruz-Reyna and two anonymous reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Greco.

Additional information

Editorial responsibility: S. de la Cruz-Reyna

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, F., Currenti, G., D’Agostino, G. et al. Combining relative and absolute gravity measurements to enhance volcano monitoring. Bull Volcanol 74, 1745–1756 (2012). https://doi.org/10.1007/s00445-012-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0630-0

Keywords

Navigation