Skip to main content
Log in

Reconstructing the tephra dispersal pattern from the Bronze Age eruption of Santorini using an advection–diffusion model

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The advection–diffusion model TEPHRA2 has been used in conjunction with the downhill simplex method (DSM) and one-at-a-time (OAT) inversion methods to reconstruct the eruption conditions and seasonality consistent with the deposit patterns from the Bronze Age (‘Minoan’) eruption of Santorini. We investigated three datasets representing different depositional environments (proximal terrestrial, distal terrestrial and deep-sea core), in order to determine source conditions such as plume height, erupted mass and grain-size and recreate the tephra fall deposit from the Plinian, co-ignimbrite and combined eruptive phases. The results of the DSM and OAT method agreed adequately well with each other for erupted mass, plume height and grain-size distribution. Both approaches were able to successfully recreate the Plinian deposit but estimating conditions that created the co-ignimbrite and deep-sea core dataset were less successful. The reduced agreement is the result of the low quantity (6 to 28 deposit points) and quality (inconsistent deposit depths at localities adjacent to each other) of the datasets, and the different dynamics between co-ignimbrite and Plinian columns, with the former not well represented in the model. Different sampling methods between archaeological and volcanological disciplines and post-depositional processes which have acted on the tephra deposits since the Bronze Age can explain the discrepancy between these computed and observed deposits. The seasonality of the Minoan eruption was investigated by using seasonal wind profiles for winter, spring, summer and autumn. We find that the Bronze Age eruption of Santorini is likely to have during the spring and summer months with a main dispersal axis aligned East. Crete would have received very little ash fall, and the eruption would not have caused much disruption to the life of the inhabitants of the island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Armienti P, Macedonio G, Pareschi M (1988) A numerical model for simulation of tephra transport and deposition: applications to May 18th, 1980, Mount St, Helens eruption. J Geophys Res 93(B6):6463–6476

    Article  Google Scholar 

  • Athanassakis AN (2004) Hesiod: Theogony; works and days; shield: translation, introduction, and notes. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Baillie M, Munro M (1988) Irish tree rings, Santorini and volcanic dust veils. Nature 332(6162):344–346

    Article  Google Scholar 

  • Biass S, Bonadonna C (2010) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90

    Article  Google Scholar 

  • Blong RJ (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic, Australia

    Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. The Geological Society, London, pp 243–259

    Google Scholar 

  • Bonadonna C, Costa A (2012) Modeling of tephra sedimentation from volcanic plumes. In: Fagents S, Gregg T, Lopes R (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 1–47

    Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187

    Article  Google Scholar 

  • Bonadonna C, Macedonia G, Sparks RSJ (2002) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999 (Geological Society Memoirs 21). The Geological Society, London, pp 517–537

    Google Scholar 

  • Bonadonna C, Connor C, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modelling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110:B03203

    Article  Google Scholar 

  • Bonasia R, Macedonio G, Costa A, Mele D, Sulpizio R (2010) Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure. J Volcanol Geotherm Res 189:238–246

    Article  Google Scholar 

  • Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc 132(1):1–16

    Article  Google Scholar 

  • Braudel F (1992) The Mediterranean and the Mediterranean World in the Age of Philip II. Translated by Siân Reynolds. Book Club Associates, London

    Google Scholar 

  • Bursik M (1998) Tephra Dispersal. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions (Geological Society Special Publications 145). The Geological Society, London, pp 115–144

    Google Scholar 

  • Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cioni R, Gurioli L, Sbrana A, Vougioukalakis G (2000a) Precursors to the Plinian eruptions of Thera (Late Bronze Age) and Vesuvius (ad 79): data from archaeological areas. Phys Chem Earth (A) 25(9–11):719–724

    Article  Google Scholar 

  • Cioni R, Gurioli L, Sbrana A, Vougioukalakis G (2000b) Precursory phenomena and destructive events related to the Late Bronze Age Minoan (Thera, Greece) and ad 79 (Vesuvius, Italy) Plinian eruptions: inferences from the stratigraphy in archaeological areas. In: McGuire WG, Griffiths DR, Hancock PL, Stewart IS (eds) The archaeology of geological catastrophes. Geological Society of London, Special Publications 171, pp 123–141

  • Connor LJ, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. The Geological Society, London, pp 231–242

    Google Scholar 

  • Connor C, Hill B, Winfrey B, Franklin N, Femina P (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2:33–42

    Article  Google Scholar 

  • Cook RJ, Barron JC, Papendick RI, Williams GJ (1981) Impacts on agriculture of Mount St Helens eruption. Science 211:16–22

    Article  Google Scholar 

  • Daniele P, Lirer L, Petrosino P, Spinelli N, Peterson R (2009) Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio. Comput Geosci 35:1035–1049

    Article  Google Scholar 

  • Ding ZL, Rutter NW, Sun JM, Yang SL, Liu TS (2000) Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China evidence from grain size records of loess-paleosol and red clay sequence. Quat Sci Rev 19:547–558

    Article  Google Scholar 

  • Doumas C, Papazoglou L (1980) Santorini tephra from Rhodes. Nature 287(5780):322–324

    Article  Google Scholar 

  • Downey WS, Tarling DH (1984) Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels of late Minoan civilization. Nature 309(5968):519–523

    Article  Google Scholar 

  • Driessen J (2002) Towards and archaeology of crisis: defining the long-term impact of the Bronze Age Santorini eruption. In: Torrence R, Grattan J (eds) Natural disasters and cultural change. Routledge, London, pp 252–263

    Google Scholar 

  • Driessen J, MacDonald C (1997) The troubled island: Minoan Crete before and after the Santorini eruption. Aegaeum 17, Belgium

    Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barreiro B (1999) Santorini volcano (Geological Society Memoirs 19). The Geological Society, London

    Google Scholar 

  • Eastwood WJ, Pearce NJG, Westgate J, Perkins WT (1998) Recognition of Santorini (Minoan) tephra in lake sediments from Gölhisar Gölü, Southwest Turkey by laser ablation ICP-MS. J Archaeol Sci 25:677–687

    Article  Google Scholar 

  • Eastwood WJ, Pearce NJG, Westgate JA, Perkins WT, Lamb HF, Roberts N (1999) Geochemistry of Santorini tephra in lake sediments from Southwest Turkey. Glob Plant Chang 21:17–29

    Article  Google Scholar 

  • Eastwood WJ, Tibby J, Roberts N, Birks HJB, Lamb HF (2002) The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Gölhisar, southwest Turkey. Holocene 12(4):431–444

    Article  Google Scholar 

  • European Centre for Medium-Range Weather Forecasts (2010) ERA 40, Synoptic Monthly Means. Available from: http://data-portal.ecmwf.int/data/d/era40_mnth/levtype=pl//. Accessed 06 July 2009

  • Fero J, Carey S, Merrill J (2008) Simulation of the 1980 eruption of Mount St. Helens using the ash-tracking model PUFF. J Volcanol Geotherm Res 175:355–366

    Article  Google Scholar 

  • Folch A, Felpeto A (2005) A coupled model for dispersal of tephra during sustained explosive eruptions. J Volcanol Geotherm Res 145:337–349

    Article  Google Scholar 

  • Friedrich WL, Wagner P, Tauber H (1990) Radiocarbon dated plant remains from the Akrotiri excavation on Santorini, Greece. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean World III: volume 3 chronology. The Thera Foundation, London, pp 188–196

    Google Scholar 

  • Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548

    Article  Google Scholar 

  • Gorokhovich Y (2005) Abandonment of Minoan palaces on Crete in relation to the earthquake induced changes in groundwater supply. J Archaeol Sci 32:217–222

    Article  Google Scholar 

  • Handy RL (1976) Loess distribution by variable winds. Geol Soc Am Bull 87:915–927

    Article  Google Scholar 

  • Heiken G, McCoy FM (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. J Geophys Res 89(B10):8441–8462

    Article  Google Scholar 

  • Heiken G, McCoy FM (1990) Precursory activity to the Minoan Eruption, Thera, Greece. In: Hardy DA (ed) Thera and the Aegean World III: volume 2 earth sciences. The Thera Foundation, London, pp 79–88

    Google Scholar 

  • Huber H, Bichler M, Musilek A (2003) Identification of pumice and volcanic ash from archaeological sites in the Eastern Mediterranean region using chemical fingerprinting. Ägypten und Levante 13:83–105

    Google Scholar 

  • Koyaguchi T, Ohno M (2001) Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits: 1. Methods. J Geophys Res 106(B4):6499–6512

    Article  Google Scholar 

  • Kratzmann DJ, Carey SN, Fero J, Scasso RA, Naranjo JA (2010) Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. J Volcanol Geotherm Res 190:337–352

    Article  Google Scholar 

  • Kuniholm PI (1990) Overview and assessment of the evidence for the date of the eruption of Thera. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 3 chronology. The Thera Foundation, London, pp 13–18

    Google Scholar 

  • Kuniholm PI, Kromer B, Manning SW, Newton M, Latini CE, Bruce MJ (1996) Anatolian tree rings and the absolute chronology of the eastern Mediterranean, 2220–718 B.C. Nature 381(6585):780–783

    Article  Google Scholar 

  • Ledbetter MT, Sparks RSJ (1979) Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers. Geology 7:240–244

    Article  Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the plinian fall phase of 79 A.D. Eruption of Vesuvius. J Geophys Res 93(B12):14,817–14,827

    Article  Google Scholar 

  • Mader HM (1998) Conduit flow and fragmentation. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions (Geological Society Special Publications 145). The Geological Society, London, pp 51–71

    Google Scholar 

  • Manning SW (1995) The absolute chronology of the Aegean Early Bronze Age: archaeology, radiocarbon and history. Sheffield Academic Press, Sheffield

    Google Scholar 

  • Manning SW (1999) A test of time: the volcano of Thera and the chronology and history of the Aegean and the east Mediterranean in the mid second millennium bc. Oxbow, Oxford

    Google Scholar 

  • Manning SW, Sewell D (2002) Volcanoes and history: a significant relationship? The case of Santorini. In: Torrence R, Grattan J (eds) Natural disasters and cultural change. Routledge, London, pp 265–291

    Google Scholar 

  • Manville V, Wilson CJ (2004) Vertical density currents: a review of their potential role in the deposition and interpretation of deep-sea ash layers. J Geol Soc 161:947–958

    Article  Google Scholar 

  • Marinatos S (1939) The volcanic destruction of Minoan Crete. Antiqu 13:425–439

    Google Scholar 

  • Marketou T (1990) Santorini tephra from Rhodes and Kos: some chronological remarks based on stratigraphy. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 3 chronology. The Thera Foundation, London, pp 100–113

    Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2009.01.2008

  • Mastrolorenzo L, Pappalardo L, Troise C, Panizza A, De Natale G (2008) Probabilistic tephra hazard maps for the Neapolitan area: quantitative volcanological study of Campi Flegrei eruptions. J Geophys Res 113. doi:10.1029/2007JB004954

  • McClelland E, Thomas R (1990) A Palaeomagnetic study of Minoan age tephra from Thera. In: Hardy DA, Keller J, Galanopoulos VP, Flemming NC, Druitt TH (eds) Thera and the Aegean world III: volume 2 earth sciences. The Thera Foundation, London, pp 129–138

    Google Scholar 

  • McCoy FW (1980) The Upper Thera (Minoan) ash in deep-sea sediments: distribution and comparison with other ash layers. In: Doumas C (ed) Thera and the Aegean World II. The Thera Foundation, London, pp 57–78

    Google Scholar 

  • McCoy F, Heiken G (2000) The Late Bronze Age explosive eruption of Thera (Santorini), Greece: Regional and local effects. In: McCoy F, Heiken G (eds) Volcanic hazards and disasters in human antiquity. Geological Society of America Special Paper 345, Colorado, pp 43–70

  • Minoura K, Imamura F, Kuran U, Nakamura T, Papadopoulos GA, Takahashi T, Yalciner AC (2000) Discovery of Minoan tsunami deposits. Geol 28(1):59–62

    Article  Google Scholar 

  • Momigliano N (2005) Iasos and the Aegean islands before the Santorini eruption. In: Laffineur R and Greco E (eds) EMPORIA. Aegeans in the Central and Eastern Mediterranean. Proceedings of the 10th International Aegean Conference, Athens 14–18 April 2004. Aegaeum 25, Belgium, pp 217–227

  • Newhall C, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Ninkovich D, Heezen BC (1965) Santorini Tephra. In: Whittard WF, Bradshaw R (eds) Submarine Geology and Geophysics. In: Proceedings of the 17th Symposium of the Colston Research Society held in the University of Bristol April 5th–9th, 1965. Butterworths, London, pp 413–453

  • Ninkovich D, Sparks RSJ, Ledbetter MT (1978) The exceptional magnitude and intensity of the Toba eruption, Sumatra: an example of the use of deep-sea tephra layers as a geological tool. Bull Volcanol 41–3:286–298

    Article  Google Scholar 

  • Pearce NJG, Eastwood WJ, Westgate JA, Perkins WT (2002) Trace-element composition of single glass shards in distal Minoan tephra from SW Turkey. J Geol Soc 159:545–556

    Article  Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Article  Google Scholar 

  • Pye K (1993) The Dynamics and environmental context of Aeolian sedimentary systems (Geological Society Special Publications 72). The Geological Society, London

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1990) New estimates for the volume of the Minoan eruption. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 2 earth sciences. The Thera Foundation, London, pp 113–121

    Google Scholar 

  • Robinson AR, Leslie WG, Theocharis A, Lascaratos A (2001) Ocean circulation currents: Mediterranean Sea circulation. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean sciences. Academic, London, pp 1689–1706

    Chapter  Google Scholar 

  • Rubin M, Suess H (1955) U.S. Geological Survey radiocarbon dates II. Science 121(3145):481–488

    Article  Google Scholar 

  • Scasso RA, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56:121–132

    Google Scholar 

  • Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160:147–164

    Article  Google Scholar 

  • Scollo S, Folch A, Costa A (2008a) A parametric and comparative study of different tephra fallout models. J Volcanol Geotherm Res 176:199–211

    Article  Google Scholar 

  • Scollo S, Tarantola S, Bonadonna C, Coltelli M, Saltelli A (2008b) Sensitivity analysis and uncertainty estimation for tephra dispersal models. J Volcanol Geotherm Res 113(B06202). doi:10.1029/2006JB004864

  • Sewell D (2001) Earth, air, fire and water. An elemental analysis of the Minoan eruption of Santorini volcano‘. Unpublished Ph.D. thesis, University of Reading

  • Shipley S, Sarna-Wojcicki AM (1982) Distribution, thickness, and mass of Late Pleistocene and Holocene tephra from major volcanoes in the northwestern United States: a preliminary assessment of hazards from volcanic ejecta to Nuclear reactors in the Pacific Northwest. U.S. Geological Survey Miscellaneous Field Studies Map MF-1435

  • Sigurdsson H, Carey S, Devine JD (1990) Assessment of mass, dynamics and environmental effects of the Minoan eruption of Santorini volcano. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 2 earth sciences. The Thera Foundation, London, pp 100–112

    Google Scholar 

  • Skinner D (2009) The introduction of a VEI-based framework for probabilistic tephra-fall assessment; and the evolution of tephra distributions and mass flow-rates within Santiaguito thermals. M.Sc. thesis, University of Bristol

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Sparks RSJ, Huang TC (1980) The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol Mag 117(5):425–436

    Article  Google Scholar 

  • Sparks RSJ, Wilson CJN (1990) The Minoan deposits: a review of their characteristics and interpretation. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 2 earth sciences. The Thera Foundation, London, pp 89–99

    Google Scholar 

  • Sparks RSJ, Brazier S, Huang TC, Muerdter D (1984) Sedimentology of the Minoan deep-sea tephra layer in the Aegean and the Eastern Mediterranean. Mar Geol 54:131–167

    Article  Google Scholar 

  • Sullivan DG (1988) The discovery of Santorini Minoan tephra in western Turkey. Nature 333(6173):552–554

    Article  Google Scholar 

  • Sullivan DG (1990) Minoan tephra in lake sediments in western Turkey: dating the eruption and assessing the atmospheric dispersal of ash. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean world III: volume 3 chronology. The Thera Foundation, London, pp 114–119

    Google Scholar 

  • Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc Volcanism: Physics and Tectonics. Proceedings of a IAVCEI Symposium, August–September 1981. Terra Scientific Publishing Company, Tokyo, pp 95–113

  • Taddeucci J, Wohletz KH (2001) Temporal evolution of the Minoan eruption (Santorini, Greece), as recorded by its plinian fall deposit and interlayered ash flow beds. J Volcanol Geotherm Res 109:299–317

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Oxford

    Google Scholar 

  • Thorarinsson S (1971) Damage caused by tephra fall in some big Icelandic eruptions and its relation to the thickness of tephra layers. In: Kaloyeropoyloy A (ed) Acta of the First Scientific Congress of the Volcano of Thera, held in Greece 15th–23rd September 1969. Athens, pp 213–236

  • Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94(B2):1867–1887

    Article  Google Scholar 

  • Volentik A, Bonadonna C, Connor C, Connor L, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193:117–136

    Article  Google Scholar 

  • Warren PM, Hankey V (1989) Aegean Bronze Age chronology. Bristol Classical Press, Bristol

    Google Scholar 

  • Watkins ND, Sparks RSJ, Sigurdsson H, Huang TC, Federman S, Carey S, Ninkovich D (1978) Volume and extent of the Minoan tephra from Santorini volcano: new evidence from deep-sea sediment cores. Nature 271(5641):122–126

    Article  Google Scholar 

  • Wilson L (1978) Energetics of the Minoan eruption. In: Doumas C (ed) Thera and the Aegean World I: geosciences. The Thera Foundation, London, pp 221–228

    Google Scholar 

  • Woods AW (1998) Observations and models of eruption columns. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions (Geological Society Special Publications 145). The Geological Society, London, pp 91–115

    Google Scholar 

  • Woods AW, Bursik MI (1991) Particle fallout, thermal disequilibrium and volcanic plumes. Bull Volcanol 53:559–570

    Article  Google Scholar 

  • Woods AW, Wohletz K (1991) Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350(6315):225–227

    Article  Google Scholar 

  • Younger JG (2009) Linear A Texts. Availabla from: http://www.people.ku.edu/~jyounger/LinearA/. Accessed 28 June 2010

Download references

Acknowledgements

The authors are grateful to S. Scollo and F. McCoy, Associate Editor R. Cioni and Executive Editor James White, whose detailed and constructive reviews significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Johnston.

Additional information

Editorial responsibility: R. Cioni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, E.N., Phillips, J.C., Bonadonna, C. et al. Reconstructing the tephra dispersal pattern from the Bronze Age eruption of Santorini using an advection–diffusion model. Bull Volcanol 74, 1485–1507 (2012). https://doi.org/10.1007/s00445-012-0609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0609-x

Keywords

Navigation