Skip to main content
Log in

Geographical information system approaches for hazard mapping of dilute lahars on Montserrat, West Indies

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilera E, Pareschi MT, Rosi M, Zanchetta G (2004) Risk from lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador). Nat Hazards 33:161–189. doi:10.1023/B:NHAZ.0000037037.03155.23

    Article  Google Scholar 

  • Alexander J, Barclay J, Susnik J, Loughlin SC, Herd RA, Darnell A, Crosweller HS (2010) Sediment-charged flash floods on Montserrat: the influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194:127–138. doi:10.1016/j.jvolgeores.2010.05.002

    Article  Google Scholar 

  • Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi:10.1016/j.jvolgeores.2005.07.020

    Article  Google Scholar 

  • Barclay J, Alexander J, Susnik J (2007) Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. J Geol Soc London 164:815–827. doi:10.1144/0016-76492006-078

    Article  Google Scholar 

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphol 90:144–161. doi:10.1016/j.geomorph.2007.01.014

    Article  Google Scholar 

  • Canuti P, Casagli N, Catani F, Falorni G (2002) Modeling the Guagua Pichincha volcano (Ecuador) lahars. Phys Chem Earth 27:1587–1599. doi:10.1016/S1474-7065(02)00180-8

    Article  Google Scholar 

  • Capra L, Borselli L, Varley N, Gavilanes-Ruiz JC, Norini G, Sarocchi D, Caballero L, Cortes A (2010) Rainfall-triggered lahars at Volcan de Colima, Mexico: surface hydro-repellency as initiation process. J Volcanol Geotherm Res 189:105–117. doi:10.1016/j.jvolgeores.2009.10.014

    Article  Google Scholar 

  • Carranza EJM, Castro OT (2006) Predicting lahar-inundation zones: case study in West Mount Pinatubo, Philippines. Nat Hazards 37:331–372. doi:10.1007/s11069-005-6141-y

    Article  Google Scholar 

  • Carrivick JL, Manville V, Cronin SJ (2009) A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bull Volcanol 71:153–169. doi:10.1007/s00445-008-0213-2

    Article  Google Scholar 

  • Codilean AT, Bishop P, Hoey TB (2006) Surface process models and the links between tectonics and topography. Prog Phys Geogr 30:307–333. doi:10.1191/0309133306pp480ra

    Article  Google Scholar 

  • Crandell DR, Booth B, Kusumadinata K, Shimozuru D, Walker GPL, Westercamp D (1984) Source-book for volcanic-hazards zonation. UN Educa Sci Cult Org, France

    Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Palmer AS (1999) Dynamic interactions between lahars and stream flow: a case study from Ruapehu volcano, New Zealand. GSA Bull 111:28–38. doi:10.1130/0016-7606(1999) 111<0028:DIBLAS>2.3.CO;2

    Article  Google Scholar 

  • Darnell AR (2010) Application of geographical information systems to lahar hazard assessment on an active volcanic system. PhD thesis, University of East Anglia, Norwich

  • Darnell A, Lovett A, Barclay J, Herd R (2009) DEM fitness for delineation of lahar inundation hazard zones. Proc GIS Res UK 17th Ann Conf 1–3 April, University of Durham, pp 197–201

  • Darnell AR, Lovett AL, Barclay J, Herd RA (2010) An application-driven approach to terrain model construction. Int J Geogr Inf Sci 24:1171–1191. doi:10.1080/13658810903318889

    Article  Google Scholar 

  • Davila N, Capra L, Gavilanes-Ruiz JC, Varley N, Morini G, Gomez Vazquez A (2007) Recent lahars at Volcan de Colima (Mexico): drainage variation and spectral classification. J Volcanol Geotherm Res 165:127–141. doi:10.1016/j.jvolgeores.2007.05.016

    Article  Google Scholar 

  • De Angelis S, Bass V, Hards V, Ryan G (2007) Seismic characterisation of pyroclastic flow activity at Soufrière Hills Volcano, Montserrat, 8 January 2007. Nat Hazards Earth Syst Sci 7:467–472. doi:10.5194/nhess-7-467-2007

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J Geophys Res 106:553–566. doi:10.1029/2000JB900330

    Article  Google Scholar 

  • Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organisation of lahars at Semeru volcano, Indonesia. Bull Volcanol 72:961–970. doi:10.1007/s00445-010-0381-8

    Article  Google Scholar 

  • Edmonds M, Herd RA, Strutt MH (2006) Tephra deposits associated with a large dome collapse, Soufriere Hills Volcano, Montserrat, 12–15 July 2003. J Volcanol Geotherm Res 153:313–330. doi:10.1016/j.jvolgeores.2005.12.008

    Article  Google Scholar 

  • Fagents SA, Baloga SM (2006) Toward a model for bulking and debulking of lahars. J Geophys Res 111:B10201. doi:10.1029/2005JB003986

    Article  Google Scholar 

  • Fisher P, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30:467–489. doi:0309133306pp480ra/0309133306 pp 492ra

    Article  Google Scholar 

  • Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches. Sci Investig Rep 2007–5276, US Geol Surv, Reston, VA

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071. doi:10.1029/92JB00173

    Article  Google Scholar 

  • Hooper DM, Mattioli GS (2001) Kinematic modelling of pyroclastic flows produced by gravitational dome collapse at Soufrière Hills Volcano, Montserrat. Nat Hazards 23:65–86. doi:10.1023/A:1008130605558

    Article  Google Scholar 

  • Hubbard BE, Sheridan MF, Carrasco-Nunez G, Diaz-Castellon R, Rodriguez SR (2007) Comparative lahar hazard mapping at Volcan Citaltepetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geotherm Res 160:99–124. doi:10.1016/j.jvolgeores.2006.09.005

    Article  Google Scholar 

  • Huggel C, Schneider D, Julio Miranda P, Delgado Granados H, Kaab A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. J Volcanol Geotherm Res 170:99–110. doi:10.1016/j.jvolgeores.2007.09.005

    Article  Google Scholar 

  • Hurlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163. doi:10.1016/j.enggeo.2008.03.012

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi:10.1029/97RG00426

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984. doi:10.1130/0016-7606(1998) 110<0972:ODOLIH>2.3.CO;2

    Article  Google Scholar 

  • Kokelaar BP (2002) Setting, chronology and consequences of the eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat from 1995 to 1999. Geol Soc London Mem 21:1–43. doi:10.1144/GSL.MEM.2002.021.01.02

  • Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphol 61:41–58. doi:10.1016/j.geomorph.2003.11.005

    Article  Google Scholar 

  • Lavigne F, Thouret J-C (2002) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java. Geomophol 49:45–69. doi:10.1016/S0169-555X(02)00160-5

    Article  Google Scholar 

  • Macedonio G, Pareschi MT (1992) Numerical simulation of some lahars from Mount St. Helens. J Volcanol Geotherm Res 54:65–80. doi:10.1016/0377-0273(92)90115-T

    Article  Google Scholar 

  • Magril CS, Griffiths PG, Webb RH (2010) Analyzing debris flows with the statistically calibrated empirical model LAHARZ in southeastern Arizona, USA. Geomorphol 119:111–124. doi:10.1016/j.geomorph.2010.02.022

    Article  Google Scholar 

  • Maidment DR, Olivera F, Calver A, Eatherall A, Fraczek W (1996) Unit hydrograph derived from a spatially distributed velocity field. Hydrol Process 10:831–844. doi:hyp.3360050106/(SICI)1099-1085(199606)10:6<831::AID-HYP374>3.0.CO;2-N

    Article  Google Scholar 

  • Matthews AJ, Barclay J, Johnstone JE (2009) The fast response of volcano-seismic activity to intense precipitation: triggering of primary volcanic activity by rainfall at Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 184:405–415. doi:10.1016/j.jvolgeores.2009.05.010

    Article  Google Scholar 

  • Mulder T, Alexander J (2001) The physical character of subqueous sedimentary density flows and their deposits. Sedimentol 48:269–299. doi:10.1046/j.1365-3091.2001.00360.x

    Article  Google Scholar 

  • Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi:10.1007/s004450100173

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261. doi:(ASCE)0733-1993)119:2(244/(ASCE)0733-9429(1993) 119:2(244

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:328–344. doi:10.1016/S0734-189X(84)80011-0

    Google Scholar 

  • Oramas Dorta D, Toyos G, Oppenheimer C, Pareschi MT, Sulpizio R, Zanchetta G (2007) Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ. Nat Hazards 40:381–396. doi:10.1007/s11069-006-0035-5

    Article  Google Scholar 

  • Pitman EB, Patra A, Bauer A, Sheridan M, Bursik M (2003) Computing debris flows and landslides. Phys Fluids 15:3638–3646. doi:10.1063/1.1614253

    Article  Google Scholar 

  • Procter JN, Cronin SJ, Fuller IC, Sheridan M, Neall VE, Keys H (2010) Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu. Geomorphol 116:162–174. doi:10.1016/j.geomorph.2009.10.016

    Article  Google Scholar 

  • Quinn PF, Beven KJ, Chevallier P, Planchon O (1991) The prediction of hillslope paths for distributed hydrological modeling using digital terrain models. Hydrol Process 5:59–79. doi:hyp.3360050106/hyp.3360050106

    Article  Google Scholar 

  • Renschler CS (2005) Scales and uncertainties in volcano hazard prediction—optimizing the use of GIS and models. J Volcanol Geotherm Res 139:73–87. doi:10.1016/j.jvolgeores.2004.06.016

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Haz 19:47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • SAC8 (2007) Assessment of the hazards and risks associated with the Soufrière Hills Volcano, Montserrat: Eighth Report of the Scientific Advisory Committee on Montserrat Volcanic Activity, 20th-22nd March. MVO. http://www.mvo.ms/resources/downloads/viewcategory/37-sac-reports Cited 01 May 2010

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177

    Article  Google Scholar 

  • Schilling SP (1998) LAHARZ, GIS programs for automated mapping of lahar-inundation hazard zones. US Geol Surv Open-File Rep, 93–638:1–79

  • Scott KM, Macias JL, Naranjo JA, Rodriguez S, McGeehin JP (2001) Catastrophic debris floes transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. US Geol Surv Prof Pap 1630

  • Smemoe CM, Nelson EJ, Zundel AK, Woodruff Miller A (2007) Demonstrating floodplain uncertainty using flood probability maps. J Am Water Resour Assoc 43:359–371. doi:10.1111/j.1752-1688.2007.00028.x

    Article  Google Scholar 

  • Sosio R, Crosta GB, Frattini P (2007) Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surf Process Landforms 32:290–306. doi:hyp.3360050106/esp.1391

    Article  Google Scholar 

  • Sparks RSJ, Young SR (2002) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999: overview of scientific results. In Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London Mem 21:45–69. doi:10.1144/GSL.MEM.2002.021.01.03

  • Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geother Res 119:89–105. doi:10.1016/S0377-0273(02)00307-4

    Article  Google Scholar 

  • Susnik J (2009) Lahars in the Belham River Valley, Montserrat, West Indies. PhD thesis, University of East Anglia, Norwich

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33:309–319. doi:10.1029/96WR03137

    Article  Google Scholar 

  • Toyos G, Oramas Dorta D, Oppenheimer C, Pareschi MT, Sulpizio R, Zanchetta G (2007) GIS-assisted modellung for debris flow hazard assessment based on the events of Sarno, Southern Italy: Part 1. Maximum run-out. Earth Surf Process Landforms 32:1491–1502. doi:hyp.3360050106/esp.1640

    Article  Google Scholar 

  • Vallance JW (2000) Lahars. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 601–616

    Google Scholar 

  • Wadge G, Mattioli GS, Herd RA (2006) Ground deformation at Soufriere Hills Volcano, Montserrat during 1998–2000 measured by radar interferometry and GPS. J Volcanol Geotherm Res 52:157–173. doi:10.1016/j.jvolgeores.2005.11.007

    Article  Google Scholar 

  • Williams R, Stinton AJ, Sheridan MF (2008) Evaluation of the Titan2D two-phase flow model using an actual event: case study of the 2005 Vazcun Valley lahar. J Volcanol Geotherm Res 177:760–766. doi:10.1016/j.jvolgeores.2008.01.045

    Article  Google Scholar 

  • Zerger A (2002) Examining GIS decision utility for natural hazard risk modelling. Environ Model Softw 17:287–294. doi:10.1016/S1364-8152(01)00071-8

    Article  Google Scholar 

Download references

Acknowledgements

This research was largely financed through an ESRC/NERC studentship (PTA-036-2006-00016). We are extremely grateful to MVO for sharing some of their data and equipment with us. Thanks also to Steve Schilling of the USGS for allowing LAHARZ to be used for this research, and to Adrian Matthews, UEA, for rainfall data. We gratefully acknowledge constructive reviews by Lucia Capra and an anonymous reviewer which have improved this paper, and editorial assistance from Hugo Delgado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Darnell.

Additional information

Editorial responsibility: H. Delgado Granados

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darnell, A.R., Barclay, J., Herd, R.A. et al. Geographical information system approaches for hazard mapping of dilute lahars on Montserrat, West Indies. Bull Volcanol 74, 1337–1353 (2012). https://doi.org/10.1007/s00445-012-0596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0596-y

Keywords

Navigation