Skip to main content
Log in

A new method for the determination of the specific kinetic energy (SKE) released to pyroclastic particles at magmatic fragmentation: theory and first experimental results

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Brittle magmatic fragmentation plays a crucial role in explosive eruptions. It represents the starting point of hazardous explosive events that can affect large areas surrounding erupting volcanoes. Knowing the initial energy released during this fragmentation process is fundamental for the understanding of the subsequent dynamics of the eruptive gas-particle mixture and consequently for the forecasting of the erupting column’s behavior. The specific kinetic energy (SKE) of the particles quantifies the initial velocity shortly after the fragmentation and is therefore a necessary variable to model the gas-particle conduit flow and eruptive column regime. In this paper, we present a new method for its determination based on fragmentation experiments and identification of the timings of energy release. The results obtained on compositions representative for basaltic and phonolitic melts show a direct dependence on magma material properties: poorly vesiculated basaltic melts from Stromboli show the highest SKE values ranging from 7.3 to 11.8 kJ/kg, while experiments with highly vesiculated samples from Stromboli and Vesuvius result in lower SKE values (3.1 to 3.8 kJ/kg). The described methodology presents a useful tool for quantitative estimation of the kinetic energy release of magmatic fragmentation processes, which can contribute to the improvement of hazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB (2011) Influence of the fragmentation process on the dynamics of Vulcanian eruptions: an experimental approach. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.11.045

  • Alidibirov M, Dingwell DB (1996a) Magma fragmentation by rapid decompression. Nature 380:146–148

    Article  Google Scholar 

  • Alidibirov M, Dingwell DB (1996b) An experimental facility for the investigation of magma fragmentation by rapid decompression. Bull Volcanol 58:411–416

    Article  Google Scholar 

  • Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res 113 (B11201)

  • Büttner R, Zimanowski B, Lenk C, Koopmann A, Lorenz V (2000) Determination of thermal conductivity of natural silicate melts. Appl Phys Lett. doi:10.1063/1.1311815

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interactions experiments. J Geophys Res. doi:10.1029/2001JB000511

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res. doi:10.1029/2005JB003958

  • Calvari S, Spampinato L, Lodato L (2006) The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J Volcanol Geotherm Res 149:160–175

    Article  Google Scholar 

  • Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (1997) Multiphase flows with droplets and particles. CRC, New York, NY

  • Dellino P, Zimanowski B, Büttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J Geophys Res. doi:10.1029/2006JB004313

  • Dellino P, Dioguardi F, Zimanowski B, Büttner R, Mele D, La Volpe L, Sulpizio R, Doronzo DM, Sonder I, Bonasia R, Calvari S, Marotta E (2010) Conduit flow experiments help constraining the regime of explosive eruptions. J Geophys Res. doi:10.1029/2009JB006781

  • Dürig T, Mele D, Dellino P, Zimanowski B (2011) Comparative analyses of glass fragments from brittle fracture experiments and volcanic ash particles. Bull Volcanol (in press) doi:10.1007/s00445-011-0562-0

  • Ex W, Schmücker GA (2000) Neuerungen Im Erschütterungs-Immissionsschutz. Spreng Info 22(1):15–25

    Google Scholar 

  • Freundt A, Rosi M (eds) (1998) From magma to tephra. Modeling physical processes of explosive volcanic eruptions. Elsevier, Amsterdam

  • Grady DE (1998) Shock-wave compression of brittle solids. Mech Mat 29:181–203

    Article  Google Scholar 

  • Grady DE, Kipp ME (1997) Fragmentation properties of metals. Int J Impact Engng 20:293–308

    Article  Google Scholar 

  • Kueppers U, Scheu B, Spieler O, Dingwell DB (2006) Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J Volcanol Geotherm Res 153(1–2):125–135

    Article  Google Scholar 

  • Lawn B (1993) Fracture of brittle solids. Cambridge, New York

    Book  Google Scholar 

  • Mele D, Sulpizio R, Dellino P, La Volpe L (2011) Stratigraphy and eruptive dynamics of a pulsating Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.). Bull Volcanol. doi:10.1007/s00445-010-0407-2

  • Neri A, Papale P, Del Seppia D, Santacroce R (2002) Coupled conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius. J Volcanol Geotherm Res 120:141–160

    Article  Google Scholar 

  • Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428

    Article  Google Scholar 

  • Papale P (2001) Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J Geophys Res 106(B6):11043–11065

    Article  Google Scholar 

  • Papale P, Neri A, Macedonio G (1998) The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics. J Volcanol Geotherm Res 87:75–93

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606

    Article  Google Scholar 

  • Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) A fragmentation threshold for the initiation and cessation of explosive eruptions. Earth Planet Sci Lett 226:139–148

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruption—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astron Soc 63:117–148

    Article  Google Scholar 

  • Woods AW (1988) The fluid dynamics and thermodynamics of eruption columns. Bull Volcanol 50:169–193

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102(B1):803–814

    Article  Google Scholar 

  • Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Sonia Calvari for providing the pyroclastic samples of Mercato and Stromboli 2002/03. Valuable comments by Michael Manga and Bettina Scheu significantly improved the manuscript. Support for Dürig’s research was provided by a grant of the Friedrich Ebert Stiftung, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Dioguardi.

Additional information

Editorial responsibility: M. Manga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürig, T., Dioguardi, F., Büttner, R. et al. A new method for the determination of the specific kinetic energy (SKE) released to pyroclastic particles at magmatic fragmentation: theory and first experimental results. Bull Volcanol 74, 895–902 (2012). https://doi.org/10.1007/s00445-011-0574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0574-9

Keywords

Navigation