Skip to main content
Log in

Kimberlite wall-rock fragmentation processes: Venetia K08 pipe development

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Current kimberlite pipe development models strongly advocate a downward growth process with the pipe cutting down onto its feeder dyke by means of volcanic explosions. Evidence is presented from the K08 kimberlite pipe in Venetia Mine, South Africa, which suggests that some pipes or sub-components of pipes develop upwards. The K08 pipe in pit exposure comprises >90 vol.% chaotic mega-breccia of country rock clasts (gneiss and schist) and <10 vol.% coherent kimberlite. Sub-horizontal breccia layers, tens of metres thick, are defined by lithic clast size variations and contain zones of shearing and secondary fragmentation. Textural studies of the breccias and fractal statistics on clast size distributions are used to characterize sheared and non-sheared breccia zones and to deduce a fragmentation mechanism. Breccia statistics are compared directly with the statistics of fragmented rock produced from mining processes in order to support interpretations. Results are consistent with an initial stage of brecciation formed by upward-moving collapse of an explosively pre-conditioned hanging wall into a sub-terranean volcanic excavation. Our analysis suggests that the pre-conditioning is most likely to have been caused by explosions, either phreatic or phreatomagmatic in nature, with a total energy output of 2.7 × 109 kJ (656 t of TNT). A second stage of fragmentation is interpreted as shearing of the breccia caused by multiple late kimberlite intrusions and possible bulk movement of material in the pipe conduit related to adjacent volcanism in the K02 pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barnett WP (2003) Geological control on slope failure mechanisms in the open pit at the Venetia Mine. S Afr J Geol 106(2):149–164

    Article  Google Scholar 

  • Barnett WP (2004) Subsidence breccias in kimberlite pipes—an application of fractal analysis. Lithos 76:299–316

    Article  Google Scholar 

  • Barnett WP (2008) The rock mechanics of kimberlite volcanic pipe excavation. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2007.12.021

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715

    Article  Google Scholar 

  • Biegel RL, Sammis CG, Dieterich JH (1989) The frictional properties of a simulated gouge having a fractal particle distribution. J Struct Geol 11:827–846

    Article  Google Scholar 

  • Blenkinsop TG (1991) Cataclasis and processes of particle size reduction. Pure Appl Geophys 136(1):59–86

    Article  Google Scholar 

  • Bridgewater J, Utsumi R, Zhang Z, Tuladhar T (2003) Particle attrition due to shearing—the effects of stress, strain and particle shape. Chem Eng Sci 58:4649–4665

    Article  Google Scholar 

  • Brown RJ, Kavanagh J, Sparks RSJ, Tait M, Field M (2007) Mechanically disrupted and chemically weakened zones in segmented dikes systems cause vent localization: evidence from kimberlite volcanic systems. Geology 35(9):815–818

    Article  Google Scholar 

  • Brown RJ, Tait M, Field M, Sparks RSJ (2009) Geology of a complex kimberlite pipe (K2 pipe, South Africa): insights into conduit processes during explosive ultrabasic eruptions. Bull Volcanol. doi:10.1007/s00445-008-0211-4

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res. doi:10.1029/2001JB000792

  • Cas R, Porritt L, Pittari A, Hayman P (2008) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic. J Volcanol Geotherm Res 174(1–3):226–240

    Article  Google Scholar 

  • Cas R, Porritt L, Pittari A, Hayman P (2009) A practical guide to terminology for kimberlite facies: a systematic progression from descriptive to genetic, including a pocket guide. Lithos 112(1):183–190

    Article  Google Scholar 

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State. Dissertation, 2 volumes, University of Cape Town, IXX+432 + 406 p

  • Coop MR, Sorenson KK, Bodas Freitas T, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54(3):157–163

    Article  Google Scholar 

  • Downes PJ, Ferguson D, Griffin BJ (2007) Volcanology of the Aries micaceous kimberlite, central Kimberley Basin, Western Australia. J Volcanol Geotherm Res 159:85–107

    Article  Google Scholar 

  • Field M, Stiefenhofer J, Robey J, Kurszlaukis S (2008) Kimberlite hosted diamond deposits of southern Africa: a review. Ore Geol Rev 30:33–75

    Article  Google Scholar 

  • Guo Y, Morgan JK (2007) Fault gouge evolution and it dependence on normal stress and rock strength—results of discrete element simulations: gouge zone properties. J Geophys Res. doi:10.1029/2006JB004524

  • Guo Y, Morgan JK (2008) Fault gouge evolution and it dependence on normal stress and rock strength—results of discrete element simulations: gouge zone micromechanics. J Geophys Res. doi:10.1029/2006JB004525

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Higgins MD (2006) Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets. J Volcanol Geotherm Res 154(1/2):8–16

    Article  Google Scholar 

  • Hisada E (2004) Clast-size analysis of impact-generated pseudotachylite from Vredefort Dome, South Africa. J Struct Geol 26:1419–1424

    Article  Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12:111–134

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103(B12):19759–29779

    Article  Google Scholar 

  • Kelly EG, Spottiswood DJ (1990) The breakage function; what is it really? Miner Eng 3(5):405–414

    Article  Google Scholar 

  • Kurszlaukis S, Barnett WP (2003) Volcanological and structural aspects of the Venetia kimberlite cluster—a case study of South African kimberlite maar-diatreme volcanoes. S Afr J Geol 106(2):165–192

    Article  Google Scholar 

  • Kurszlaukis S, Büttner R, Zimanowski B, Lorenz V (1998) On the first experimental phreatomagmatic explosion of a kimberlite melt. J Volcanol Geotherm Res 80:323–326

    Article  Google Scholar 

  • Laznicka P (1988) Breccias and coarse fragmentites. Petrology, environments, associations, ores. In: Developments in economic geology, vol 25. Elsevier, New York

  • Lee KJ, Farhoomand I (2003) Compressibility and crushing of granular solids in anisotropic triaxial compression. Canadian Geotech J Ottawa, Canada 4(1):68–86

    Article  Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to the formation of kimberlite diatremes. In: Ahrens LH, Dawson JB, Duncan AR, Erlank AJ (eds) Proceedings of the 1st international kimberlite conference, Cape Town, South Africa 1973. Phys Chem Earth 9:17–27

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Article  Google Scholar 

  • Marsh BD (2007) Crystallization of silicate magmas deciphered using crystal size distributions. J Am Ceram Soc 90(3):746–757

    Article  Google Scholar 

  • McDowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48(5):667–679

    Article  Google Scholar 

  • McDowell GR, Bolton MD, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2102

    Article  Google Scholar 

  • Medlin CC (2005) Spherical, multi-shelled, juvenile magmaclasts in kimberlite, Venetia Mine. Dissertation, University of Pretoria, South Africa

  • Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcanol Geotherm Res 174(1–3):1–8

    Article  Google Scholar 

  • Mock A, Jerram DA (2005) Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46(8):1525–1541

    Article  Google Scholar 

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res. doi:10.1016/j.volgeores.2005.09.016

  • Morrow CA, Byerlee JD (1989) J Struct Geol 11:815−825

  • Mort K, Woodcock NH (2008) Quantifying fault breccia geometry: dent fault, NW England. J Struct Geol 30:701–770

    Article  Google Scholar 

  • Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite 602 pipe at Diavik, Northwest territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174:103–116

    Article  Google Scholar 

  • Naidoo P, Stiefenhofer J, Field M, Dobbe R (2004) Recent advances in the geology of Koffiefontein Mine, Free State Province, South Africa. Lithos 76:161–182

    Article  Google Scholar 

  • Nakata Y, Hyodo M, Hyde AFL, Kato Y, Murata H (2001) Microscopic particle crushing and sand subjected to one-dimensional compression, soils and foundations. Japanese Geotech Soc 41(1):69–82

    Google Scholar 

  • Perfect E (1997) Fractal models for the fragmentation of rocks and solids: a review. Eng Geol 48:185–198

    Article  Google Scholar 

  • Phillips D, Kiviets GB, Barton ES, Smith CB, Viljoen KS, Fourie LF (1999) 40Ar/39Ar dating of kimberlites and related rocks: problems and solution. In: Proceedings of the 7th international kimberlite conference, Cape Town, South Africa, pp 677–687

  • Rasband WS (1997–2009) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. Available from: http://rsb.info.nih.gov/ij/. Accessed 1 September 2003

  • Raue H, Büttner R, Lorenz V, Zimanowski B (2000) Energy budget of a typical Eifelmaar volcanic explosion. In: International maar conference, Daun/Vulkaneifel, extended abstracts, Terra Nostra 2000(6):418–422

  • Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196

    Article  Google Scholar 

  • Sammis CG, Biegel R (1989) Fractals fault gouge and friction. Pageoph 131(1/2):255–271

    Article  Google Scholar 

  • Sammis CG, King G, Biegel R (1987) The kinematics of gouge deformation. Pure Appl Geophys 125:777–812

    Article  Google Scholar 

  • Seggie AG, Hannweg GW, Colgan EA, Smith CB (1999) The geology and geochemistry of the Venetia kimberlite cluster, Northern Province, South Africa. In: Proceedings of the 7th international kimberlite conference, Cape Town, South Africa, pp 750–756

  • Seghedi I, Maicher D, Kurszlaukis S (2009) Volcanology of Tuzo pipe (Gahcho Kué cluster)—root–diatreme processes re-interpreted. Lithos. doi:10.1016/j.lithos.2009.04.027

  • Sparks RSJ, Baker L, Brown R, Field M, Schumacher J, Stripp G, Walters AL (2006) Dynamic constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Article  Google Scholar 

  • Tait M, Brown RJ, Mnyama A (2006) Internal architecture of the Venetia K1 kimberlite: a new geological model and implications for kimberlite emplacement processes. Venetia Mine, Limpopo RSA. In: 2006 kimberlite emplacement workshop: long abstracts, Saskatoon, Canada

  • Taylor RG (1992) Ore textures, recognition and interpretation: vol 1, infill. Economic Geology Research Unit, Townsville

    Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, New York

    Google Scholar 

  • Zhang J (1996) Research on the fragment-size model for blasting in jointed rock mass. In: Mohanty B (ed) Rock fragmentation by blasting. Balkema, Rotterdam, pp 19–24

    Google Scholar 

  • Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5

    Article  Google Scholar 

Download references

Acknowledgements

De Beers Consolidated Mines is thanked for the support we received and permission to publish the data. Tom Gernon and Claude Jaupart are thanked for their constructive and thoughtful reviews. Comments by Dirk van Schalkwyk are appreciated and helped simplify thoughts gone awry. Special thanks to Matthew Pierce, Toni Kojovic and Steve Sparks for discussions, analysis and well aimed questions. Venetia Mine geologists are acknowledged for their aid in sampling drill core. Brad Meiring and students Marie, Martin and JP are thanked for their contributions to data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Barnett.

Additional information

Editorial responsibility: R.S.J. Sparks

This paper constitutes part of a special issue:

Cas RAF, Russell JK, Sparks RSJ (eds) Advances in Kimberlite Volcanology and Geology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, W.P., Kurszlaukis, S., Tait, M. et al. Kimberlite wall-rock fragmentation processes: Venetia K08 pipe development. Bull Volcanol 73, 941–958 (2011). https://doi.org/10.1007/s00445-011-0499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0499-3

Keywords

Navigation