Skip to main content
Log in

Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Popocatépetl Volcano is located in the central Mexican Volcanic Belt, within a densely populated region inhabited by over 20 million people. The eruptive history of this volcano indicates that it is capable of producing a wide range of eruptions, including Plinian events. After nearly 70 years of quiescence, Popocatépetl reawakened in December 21, 1994. The eruptive activity has continued up until the date of this submission and has been characterized by a succession of lava dome growth-and-destruction episodes, similar to events that have apparently been typical for Popocatépetl since the fourteenth century. In this regime, the episodes of effusive and moderately explosive activity alternate with long periods of almost total quiescence. In this paper we analyze five years of volcano-tectonic seismicity preceding the initial eruption of the current episode. The evolution of the V-T seismicity shows four distinct stages, which we interpret in terms of the internal processes which precede an eruption after a long period of quiescence. The thermal effects of a magma intrusion at depth, the fracturing related to the slow development of magma-related fluid pathways, the concentration of stress causing a protracted acceleration of this process, and a final relaxation or redistribution of the stress shortly before the initial eruption are reflected in the rates of V-T seismic energy release. A hindsight analysis of this activity shows that the acceleration of the seismicity in the third stage asymptotically forecast the time of the eruption. The total seismic energy release needed to produce an eruption after a long period of quiescence is related to the volume of rock that must be fractured so imposing a characteristic threshold limit for polygenetic volcanoes, limit that was reached by Popocatépetl before the eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bull Earthq Res Inst Univ Tokyo 43:237–239

    Google Scholar 

  • Armienta MA, De la Cruz-Reyna S, Macías JL (2000) Chemical characteristics of the crater lakes of Popocatépetl, El Chichón, and Nevado de Toluca volcanoes, México. J Volcanol Geotherm Res 97:105–125

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Boudal C, Robin C (1989) Volcán Popocatépetl: recent eruptive history, and potential hazards and risks in future eruptions. In: Latter JH (ed) Volcanic hazards. IAVCEI Proc Volcanol. Springer, Berlin, pp 110–128

    Google Scholar 

  • Capra L, Macías JL, Scott JM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico-behavior, and implications for hazard assessment. J Volcanol Geotherm Res 113:81–110

    Article  Google Scholar 

  • Cornelius R, Scott PA (1993) A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng 26:233–252

    Article  Google Scholar 

  • Dambara T (1966) Vertical movements of the earth’s crust in relation to the Matsushiro earthquake. J Geod Soc Japan 12:18–45 (in Japanese)

    Google Scholar 

  • De la Cruz-Reyna S, Reyes-Dávila GA (2001) A model to describe precursory material-failure phenomena: applications to short-term forecasting at Colima volcano, Mexico. Bull Volcanol 63:297–308

    Article  Google Scholar 

  • De la Cruz-Reyna S, Siebe C (1997) The giant Popocatepetl stirs. Nature 388:227

    Article  Google Scholar 

  • De la Cruz-Reyna S, Tilling RI (2007) Scientific and public responses to the ongoing volcanic crisis at Popocatépetl volcano, Mexico: importance of an effective hazards-warning system. J Volcanol Geotherm Res (in press) DOI 10.1016/j.jvolgeores.2007.09.002

  • De la Cruz-Reyna S, Quezada JL, Peña C, Zepeda O, Sánchez T (2001) Historia de la actividad reciente del volcán Popocatépetl (1354–1993). In: Las Cenizas Volcánicas del Popocatépetl y sus Efectos Para la Aeronavegación e Infraestructura Aeroportuaria. CENAPRED-Instituto de Geofísica UNAM Mexico, pp 3–20

  • Feuillard M, Allegre CJ, Brandeis G, Gaulon R, Le Mouel JL, Mercier JC, Pozzi JP, Semet MP (1983) The 1975–1977 crisis of la Soufriere de Guadeloupe (FWI): a stillborn magmatic eruption. J Volcanol Geotherm Res 16:317–334

    Article  Google Scholar 

  • Frohlich C, Davis S (1993) Teleseismic b-values: or, much ado about 1.0. J Geophys Res 98:631–644

    Article  Google Scholar 

  • Guevara E, Quass R, Castelán G, Ortiz J, Vázquez J, Morquecho C, Alarcón AM, Martínez A, Gómez A, Espitia G, Alonso P, Cárdenas L (2003) Instrumentación y monitoreo del volcán Popocatépetl. Informes Técnicos CENAPRED, México, pp 1–101

    Google Scholar 

  • Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • GVN (1989) Global Volcanism Network, Smithsonian Institute Bulletin 14(4)

  • GVN (1990) Global Volcanism Network, Smithsonian Institute Bulletin 15(8)

  • GVN (1993a) Global Volcanism Network, Smithsonian Institute Bulletin 18(5)

  • GVN (1993b) Global Volcanism Network, Smithsonian Institute Bulletin 18(11)

  • GVN (1994a) Global Volcanism Network, Smithsonian Institute Bulletin 19(1)

  • GVN (1994b) Global Volcanism Network, Smithsonian Institute Bulletin 19(4)

  • GVN (1994c) Global Volcanism Network, Smithsonian Institute Bulletin 19(11)

  • GVN (1996) Global Volcanism Network, Smithsonian Institute Bulletin 21(8)

  • GVN (1998) Global Volcanism Network, Smithsonian Institute Bulletin 23(2)

  • GVN (2000) Global Volcanism Network, Smithsonian Institute Bulletin 25(12)

  • Harlow DH, Power JA, Laguerta EP, Ambubuyong G, White RA, Hobblit RP (1996) Precursory seismicity and forecasting of the June 15, 1991, eruption of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars at Mount Pinatubo, Philippines. Philvolcs, Quezon City, pp 285–305

    Google Scholar 

  • Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352

    Article  Google Scholar 

  • Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthq Res Inst Univ Tokyo 17:443–478

    Google Scholar 

  • Kamo K (1978) Some phenomena before the summit eruptions at Sakura-zima volcano. Bull Volcanol Soc Japan 23:53–64 (in Japanese with English abstract)

    Google Scholar 

  • Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125:271–289

    Article  Google Scholar 

  • Kilburn CRJ, Voight B (1998) Slow rock fracture as eruption precursor at Soufriere Hills volcano, Montserrat. Geophys Res Lett 25:3665–3668

    Article  Google Scholar 

  • Koyanagi RY, Endo ET, Ward PL (1976) Seismic activity on the Island of Hawaii, 1970 to 1973. Geophys Mon 19:169–173

    Google Scholar 

  • Lahr JC, Chouet BA, Stephens CD, Power JA, Page RA (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions of Redbout Volcano, Alaska. J Volcanol Geotherm Res 62:137–151

    Article  Google Scholar 

  • Lermo-Samaniego J, Antayhua-Vera Y, Chavacán-Avila M (2006) Análisis de la actividad sísmica del Popocatépetl (México) durante el periodo 1994–1997. Bol Soc Geol Mex 58:253–257

    Google Scholar 

  • Malone SD (1983) Volcanic earthquakes: examples from Mount St. Helens. In: Kanamori H, Boschi E (eds) Earthquakes: observation, theory and interpretation. Societá Italiana di Fisica, Bologna, pp 436–455

    Google Scholar 

  • Malone SD, Boyko C, Weaver CS (1983) Seismic precursors to the Mount St. Helens eruptions in 1981 and 1982. Science 221:1376–1378

    Article  Google Scholar 

  • Marínez-Bringas A (2005) Variaciones Temporales de la Atenuación de las Ondas Coda y del Valor b, Asociadas a la Actividad del Volcán Popocatépetl de 1995 a 2003. PhD thesis, Universidad Nacional Autónoma de México

  • Minakami T (1960) Fundamental research for predicting volcanic eruptions (Part 1). Earthquakes and crustal deformations originating from volcanic activities. Bull Earthq Res Inst Univ Tokyo 38:497–544

    Google Scholar 

  • Minakami T (1974) Seismology of volcanoes in Japan. In: Civetta L, Gasparini P, Luongo G, Rapolla A (eds) Developments in solid earth geophysics. Physical volcanology. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Mogi K (1962) Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bull Earthq Res Inst Univ Tokyo 40:831–853

    Google Scholar 

  • Ogata Y, Katsura K (1993) Analysis of temporal and spatial heterogeneity of magnitude-frequency distribution inferred from earthquake catalogues. Geophys J Int 113:727–738

    Article  Google Scholar 

  • Ortiz R, Moreno H, García A, Fuentealba G, Astiz M, Peña P, Sánchez N, Tárraga M (2003) Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J Volcanol Geotherm Res 128:247–259

    Article  Google Scholar 

  • Ramos E, De la Cruz-Reyna S, Yokoyama I (1990) Monitoreo sísmico en el volcán Popocatépetl. Dept Geof Fac Sci, UNAM

    Google Scholar 

  • Reyes-Dávila GA, De la Cruz-Reyna S (2002) Experience in the short-term eruption forecasting at Volcán de Colima, México, and public response to forecasts. J Volcanol Geotherm Res 117:121–127

    Article  Google Scholar 

  • Robin C, Boudal C (1987) A gigantic Bezymianny-type event at the beginning of modern volcano Popocatépetl. J Volcanol Geotherm Res 31:115–130

    Article  Google Scholar 

  • Roman DC, Cashman KV (2006) The origin of volcano-tectonic swarms. Geology 34:457–460

    Article  Google Scholar 

  • Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature 337:251–253

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282

    Article  Google Scholar 

  • Siebe C, Macías JL (2004) Volcanic hazards in the Mexico City metropolitan area from eruptions of Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanes and monogenetic scoria cones in the Sierra Chichinautzin. Field guide, Penrose Conf Neogene-Quaternary Continental margin volcanism. Geol Soc Am 1:1–77

    Google Scholar 

  • Siebe C, Abrams M, Macías JL, Obenholzner J (1996) Repeated volcanic disasters in pre-Hispanic time at Popocatépetl, Central Mexico. Past key to the future? Geology 24:399–402

    Article  Google Scholar 

  • Tárraga M, Carniel R, Ortiz R, Marrero JM, García A (2006) On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat Haz Earth Syst Sci 6:365–376

    Google Scholar 

  • Taylor DWA, Snoke JA, Sacks IS, Takanami T (1990) Non-linear frequency-magnitude relationship for the Hokkaido corner, Japan. Bull Seismol Soc Am 80:340–353

    Google Scholar 

  • Tokarev PI (1963) On a possibility of forecasting of Bezymianny volcano eruptions according to seismic data. Bull Volcanol 26:379–386

    Article  Google Scholar 

  • Tokarev PI (1981) Seismology of Kamchatka volcanoes (in Russian). Nauka, Moscow

    Google Scholar 

  • Tokarev PI (1983) Experience in predicting volcanic eruptions in the USSR. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 257–268

    Google Scholar 

  • Tokarev PI (1985) The prediction of large explosions of andesitic volcanoes. J Geodyam 3:219–244

    Article  Google Scholar 

  • Utsu T (1965) A method for determining the value of b in a formula log n = a − bM showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ 13:99–103 (in Japanese)

    Google Scholar 

  • Utsu T (1992) On seismicity. In: Report of the Joint Research Institute for Statistical Mathematics, Institute for Statistical Mathematics, Tokyo, pp 139–157

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203

    Article  Google Scholar 

  • Warren NW, Latham G (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75:4455–4464

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382

    Google Scholar 

  • Wiemer S, McNutt SR (1997) Variations in frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska. Geophys Res Lett 24:189–192

    Article  Google Scholar 

  • Wiemer S, Wyss M (1997) Mapping the frequency magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102:15115–15128

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  • Wiemer S, McNutt SR, Wyss M (1998) Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long-Valley caldera, California. Geophys J Int 134:409–421

    Article  Google Scholar 

  • Witter JB, Kress VC, Newhall CG (2005) Volcán Popocatépetl, Mexico. Petrology, magma mixing, and immediate sources of volatiles for the 1994–present eruption. J Petrol 46:2337–2366

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95:684–698

    Article  Google Scholar 

  • Wyss M, Shimazaki K, Wiemer S (1997) Mapping active magma chambers by b-value beneath the off-Ito volcano, Japan. J Geophys Res 102:20413–20422

    Article  Google Scholar 

  • Yokoyama I (1988) Seismic energy releases from volcanoes. Bull Volcanol 50:1–13

    Article  Google Scholar 

  • Yokoyama I (2001) The largest magnitudes of earthquakes associated with some historical volcanic eruptions and their volcanological significance. Ann Geofis 44:1021–1029

    Google Scholar 

  • Yokoyama I, Seino M (2000) Geophysical comparison of the three eruptions in the 20th century of Usu volcano, Japan. Earth Plan Space 52:73–89

    Google Scholar 

  • Yokoyama I, Yamashita H, Watanabe H, Okada H (1981) Geophysical characteristics of dacite volcanism—The 1977–1978 eruption of Usu volcano. J Volcanol Geotherm Res 9:335–358

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the National Seismological Service of México (SSN), to the SISMEX network, and to CENAPRED for sharing their seismic data with us, and particularly to Ana María Alarcón for her help processing with ZMAP. The Japan International Cooperation Agency (JICA) early understood our strategy of monitoring Popocatépetl volcano and provided radiotelemetry and other equipment in the early precursory stage. We are deeply grateful to its authorities. We thank Prof. Takeshi Mikumo for his valuable comments and suggestions, and Dr. Carlos Valdés for his help in completing the seismic data set. We thank Prof. R. Scandone and an anonymous reviewer, whose comments and suggestions have greatly improved our manuscript. This study has been partially financed by DGAPA-PAPIIT UNAM grant IN110502. The Mexican National System of Civil Protection (SINAPROC) provided support and valuable information for which we are indebted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servando De la Cruz-Reyna.

Additional information

Editorial responsibility: C Kilburn

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Cruz-Reyna, S., Yokoyama, I., Martínez-Bringas, A. et al. Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico. Bull Volcanol 70, 753–767 (2008). https://doi.org/10.1007/s00445-008-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0195-0

Keywords

Navigation