Skip to main content
Log in

The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Accurate and precisely located self-potential (SP), temperature (T) and CO2 measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzo–Fossa area) is indicated by large positive SP, T and CO2 anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeable than surrounding rocks at Stromboli. The analysis of the distribution of these linear anomalies, coupled with the examination of the geologic, photographic and topographic data, has led us to propose a new structural interpretation of the summit of Stromboli. This newly defined structural framework comprises (1) a large Pizzo circular crater, about 350 m in diameter; (2) a complex of two concealed craters nested within the Pizzo crater (the Large and the Small Fossa craters), thought to have formed during the eruption of the Pizzo pyroclastites unit; the Small Fossa crater is filled with highly impermeable material that totally impedes the upward flow of hydrothermal fluids; and (3) The present complex of active craters. On the floor of the Fossa, short wavelength SP lows are organized in drainage-like networks diverging from the main thermal anomalies and converging toward the topographic low in the Fossa area, inside the Small Fossa crater. They are interpreted as the subsurface downhill flow of water condensed above the thermal anomalies. We suspect that water accumulates below the Small Fossa crater as a perched water body, representing a high threat of strong phreatic and phreatomagmatic paroxysms. T and CO2 anomalies are highly correlated. The two types of anomalies have very similar shapes, but the sensitivity of CO2 measurements seems higher for lowest hydrothermal flux. Above T anomalies, a pronounced high frequency SP signal is observed. Isotopic analyses of the fluids show similar compositions between the gases rising through the faults of the Pizzo and Large Fossa craters. This suggests a common origin for gases emerging along different structural paths within the summit of Stromboli. A site was found along the Large Fossa crater fault where high gas flux and low air contamination made gas monitoring possible near the active vents using the alkaline bottle sampling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  • Allard P, Hammouya G, Parello F (1998) Diffuse magmatic soil degassing at Soufrière of Guadeloupe, Antilles. C R Acad Sci Paris 327:315–318

    Article  CAS  Google Scholar 

  • Alparone S, Cocina O, Falsaperla S, Patanè D, Privitera E, Spampinato S (1999) Aeolian Islands, Stromboli : seismicity. Volcanology and chemistry of the Earth's interior. Italian Research Activity (1995–1998) report to IAVCEI. Boll Geofis Appl 40:222–224

    Google Scholar 

  • Aubert M (1999) Practical evaluation of steady heat discharge from dormant active volcanoes : case study of Vulcarolo fissure (Mount Etna, Italy). J Volcanol Geotherm Res 92:413–429

    Article  CAS  Google Scholar 

  • Aubert M, Atangana Q (1996) Self-potential method in hydrogeological exploration of volcanic areas. Ground Water 34:1010–1016

    CAS  Google Scholar 

  • Aubert M, Baubron JC (1988) Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil-atmosphere analysis. J Volcanol Geotherm Res 35:217–225

    CAS  Google Scholar 

  • Aubert M, Dana I (1994) Interprétation des profils radiaux de polarisation spontanée (PS) en volcanologie. Possibilités d'application de la méthode PS à la surveillance des volcans actifs. Bull Soc Géol France 165:113–122

    Google Scholar 

  • Aubert M, Auby R, Bourley F, Bourley Y (1984) Contribution à la surveillance de l'activité de l'Etna à partir de l'étude des zones fumeroliennes. Bull Volcanol 47:1039–1050

    Google Scholar 

  • Aubert A, Dana I, Livet M (1990) Identification of the boundaries between two watersheds in a volcanic area by self-potential method. C R Acad Sci Paris 311:990–1004

    Google Scholar 

  • Aubert M, Dana I, Dupuy JC (1991) Application of the self-potential method to the detection of underground water courses in a volcanic area. C R Acad Sci Paris 312:325–330

    Google Scholar 

  • Aubert M, Antraygues P, Soler E (1993) Interpretation of the self-potential measurements in hydrogeological exploration of a volcanic massif. On the existence of groundwater flow paths on the south flank of the Piton de la Fournaise (Réunion Island). Bull Soc Géol France 164:17–25

    Google Scholar 

  • Azzaro R, Branca S, Giammanco S, Gurrieri S, Rasà R, Valenza M (1998) New evidence for the form and extent of the Pernicana Fault System (Mt Etna) from structural and soil-gas surveying. J Volcanol Geotherm Res 84:143–152

    Article  CAS  Google Scholar 

  • Ballestracci R (1982a) Self-potential survey near the craters of Stromboli volcano (Italy). Inference for internal structure and eruption mechanism. Bull Volcanol 45:349–365

    Google Scholar 

  • Ballestracci R (1982b) Audiomagnetotelluric profiling on the volcano Stromboli, internal structure and mechanism of the strombolian activity. J Volcanol Geotherm Res 12:317–337

    Google Scholar 

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187

    Google Scholar 

  • Barberi F, Carapezza ML (1994) Helium and CO2 soil gas emission from Santorini (Greece). Bull Volcanol 56:335–342

    Article  Google Scholar 

  • Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamics of Stromboli volcano. EOS Trans Am Geophys Union 80:633–636

    Google Scholar 

  • Bonaccorso A, Gambino S, Puglisi G, Mattia M, Velardita R, Villari L (1999) Aeolian Islands, Stromboli: ground deformation. Volcanology and chemistry of the Earth's interior. Italian Research Activity (1995–1998) report to IAVCEI. Boll Geofis Appl 40:224–226

    Google Scholar 

  • Bullard FM (1954) Activity of Stromboli in June and December 1952. Bull Volcanol 15:91–98

    Google Scholar 

  • Braun T, Neuberg J, Ripepe M (1996) On the origin of the long-period tremor recorded at Stromboli Volcano (Italy). Ann Geof 39:311–326

    Google Scholar 

  • Carapezza ML, Federico C (2000) The contribution of fluid geochemistry to the volcano monitoring of Stromboli. J Volcanol Geotherm Res 95:227–245

    Article  CAS  Google Scholar 

  • Chébli Y (1997) Tomographie thermique et géoélectrique du cratère du Vulcano. Mémoire de DEA Processus Magmatiques et Métamorphiques—Volcanologie, Université Blaise Pascal, Clermont-Ferrand II

  • Coltelli M, Pompilio M, Del Carlo P (1999) Aeolian Islands, Stromboli : volcanic activity. Volcanology and chemistry of the Earth's interior. Italian Research activity (1995–1998) report to IAVCEI. Italian research activity (1995–1998) report to IAVCEI. Boll Geof Appl 40:217–222

    Google Scholar 

  • Corwin RF, Hoover DB (1979) The self-potential method in geothermal exploration. Geophysics 44:226–245

    Article  Google Scholar 

  • D'Alessandro W, De Domenico R, Parello F, Valenza M (1992) Soil degassing in tectonically active areas of Mt Etna. Acta Vulcanol 2:175–183

    Google Scholar 

  • Di Maio R, Patella D (1994) Self-potential anomaly generation in volcanic areas. The Mt Etna case-history. Acta Vulcanol 4:119–124

    Google Scholar 

  • Ernstson K, Scherer H (1986) Self-potential variations with time and their relation to hydrogeologic and meteorological parameters. Geophysics 51:1967–1977

    Article  Google Scholar 

  • Etiope G, Beneduce P, Calcara M, Favali P, Frugoni F, Schiattarella M, Smriglio G (1999) Structural pattern and CO2–CH4 degassing of Ustica Island, Southern Tyrrhenian basin. J Volcanol Geotherm Res 88:291–304

    Article  CAS  Google Scholar 

  • Finizola A (1996) Etude d'une fissure thermique au Stromboli; interprétation volcanologique et structurale. Mémoire de DEA Processus Magmatiques et Métamorphiques—Volcanologie, Université Blaise Pascal, Clermont-Ferrand II

  • Finizola A, Ramos D, Macedo O (1998) Self-potential studies of hydrothermal systems and structure on Misti and Ubinas volcanoes, South Peru. In: Geophysicae A (ed) 23rd EGS Meeting. Solid Earth Geophysics and Geodesy, Nice

  • Finizola A, Sortino F, Lénat JF, Valenza M (2002) Fluid circulation at Stromboli volcano (Aeolian Island, Italy), from self-potential and CO2 surveys. J Volcanol Geotherm Res 116(1–2):1–18

    Google Scholar 

  • Francalanci L (1987) Evoluzione vulcanologica e magmatologica dell'isola di Stromboli (Isole Eolie): Relazioni tra magmatismo calc-alcalino e shoshonitico, Tesi di dottorato, Università di Firenze, Firenze

    Google Scholar 

  • Gabbianelli G, Romagnoli C, Rossi PL, Calanchi N (1993) Marine geology of the Panarea—Stromboli area (Aeolian Archipelago, Southeastern Tyrrhenian sea). Acta Vulcanol 3:11–20

    Google Scholar 

  • Giammanco S, Gurrieri S, Valenza M (1997) Soil CO2 degassing along tectonic structures of Mount Etna (Sicily): the Pernicana fault. Appl Geochem 12:429–436

    Article  CAS  Google Scholar 

  • Giammanco S, Gurrieri S, Valenza M (1998) Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bull Volcanol 60:252–259

    Article  Google Scholar 

  • Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39:15–27

    Google Scholar 

  • Gillot PY (1984) Datation par la méthode potassium argon des roches volcaniques récentes (pléistocènes et holocènes). Contribution à l'étude chronostratigraphique et magmatique des provinces volcaniques de Campanie, des Iles Eoliennes, de Pantelleria (Italie du Sud) et de la Réunion (Océan Indien). PhD Thesis, Paris XI-Orsay

  • Gillot PY, Keller J (1993) Radiochronological dating of Stromboli. Acta Vulcanol 3:69–77

    Google Scholar 

  • Gwinner K, Hauber E, Jaumann R, Neukum G (2000) High-resolution, digital photogrammetric mapping : a tool for earth science. EOS Trans Am Geophys Union 81:515–520

    Google Scholar 

  • Hornig-Kjarsgaard I, Keller J, Koberski U, Stadlbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian Arc, Italy. Acta Vulcanol 3:21–68

    Google Scholar 

  • Jackson DB, Kauahikaua J (1987) Regional self-potential anomalies at Kilauea volcano. Volcanism in Hawaii, ch 40. US Geol Survey Prof Pap 1350:947–959

    Google Scholar 

  • Keller J, Hornig-Kjarsgaard I, Koberski U, Stadlbauer E, Lenhart R (1993) Geological map of the island of Stromboli. Acta Vulcanol 3

  • Lénat JF, Robineau B, Durand S, Bachélery P (1998) Etude de la zone sommitale du volcan Karthala (Grande Comore) par polarisation spontanée. C R Acad Sci 327:781–788

    Google Scholar 

  • Malengreau B, Lénat JF, Bonneville A (1994) Cartographie et surveillance temporelle des anomalies de Polarisation Spontanée (PS) sur le Piton de la Fournaise. Bull Soc Géol Fr 165:221–232

    Google Scholar 

  • Martini M (1991) Stromboli, report activity. Bull Global Volcanism Network 16:20–21

    Google Scholar 

  • Matsushima N, Michiwaki M, Okazaki N, Ichikawa N, Takagi A, Nishida Y, Mori HY (1990) Self-potential study in volcanic areas—Usu, Hokkaido Komaga-take and Me-akan. J Fac Sci Hokkaido Univ Ser VII (Geophysics) 8:465–477

    Google Scholar 

  • Nishida Y, Tomiya H (1987) Self-potential studies in volcanic areas—Usu volcano. J Fac Sci Hakkaiodo Univ Ser VII (Geophysics) 8:173–190

    Google Scholar 

  • Papale P (1999) Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids. Am Mineral 84:477–492

    CAS  Google Scholar 

  • Pasquarè G, Francalanci L, Garduno VH, Tibaldi A (1993) Structure and geologic evolution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanol 3:79–89

    Google Scholar 

  • Patella D (1997) Self-potential global tomography including topographic effects. Geophys Prospect 45:843–863

    Google Scholar 

  • Ripepe M (1996) Evidence of gas influence on volcanic seismic signals recorded at Stromboli. J Volcanol Geotherm Res 70:221–233

    CAS  Google Scholar 

  • Ripepe M, Gordeev E (1999) Gas bubble dynamics model for shallow volcanic tremor at Stromboli. J Geophys Res B Solid Earth Planet 104:10639–10654

    Google Scholar 

  • Ripepe M, Rossi M, Saccorotti G (1993) Image processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54:335–351

    Google Scholar 

  • Ripepe M, Poggi P, Braun T, Gordeev E (1996) Infrasonic waves and volcanic tremor at Stromboli. Geophys Res Lett 23:181–184

    Google Scholar 

  • Ripepe M, Ciliberto S, Schiava MD (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res B Solid Earth Planet 106:8713–8727

    Google Scholar 

  • Rittmann A (1931) Der Ausbruch des Stromboli am 11 september 1930. Zeits Vulkanol 14:47–77

    Google Scholar 

  • Rosi M (1980) The island of Stromboli. Rend Soc It Mineral Petrol 36:345–368

    Google Scholar 

  • Sano Y, Tominaga T, Nakamura Y, Wakita H (1982) 3He/4He ratios of methane-rich natural gases in Japan. Geochem J 16:237–245

    CAS  Google Scholar 

  • Schiavone D, Quarto R (1984) Self-potential prospecting in the study of water movements. Geoexploration 22:47–58

    Google Scholar 

  • Sill WR (1983) Self-potential modeling from primary flows. Geophysics 48:76–86

    Article  Google Scholar 

  • Tibaldi A (2001) Multiple sector collapse at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125

    Article  Google Scholar 

  • Zablocki CJ (1976) Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. Proceedings, 2nd UN Symposium of the development and use of geothermal resources, San Francisco, May 1975, pp 1299–1309

  • Zablocki CJ (1978) Streaming potentials resulting from the descent of meteoric water. A possible source mechanism for Kilauean self-potential anomalies. Geotherm Resour Council Trans 2:747–748

    Google Scholar 

  • Zanchi A, Francalanci L (1989) Analisi geologico-strutturale dell'isola di Stromboli: alcune considerazioni preliminari. Boll GNV 5:1027–1044

    Google Scholar 

  • Zlotnicki J, Michel S, Annen C (1994) Anomalies de polarisation spontanée et systèmes convectifs sur le volcan du Piton de la Fournaise (Ile de la Réunion, France). C R Acad Sci Paris 318:1325–1331

    Google Scholar 

Download references

Acknowledgements

We are grateful to Franco Barberi for providing us with an Italian Civil Protection helicopter to carry scientific materials and food to the summit of Stromboli during the summer of 1995. We sincerely thank Jean-Marie Barnagaud and Thierry Challan for help during the 1992 and 1994, respectively, summer preliminary campaigns, Yashmin Chébli and Sébastien Durand for their invaluable help during the 1995 summer campaign, and Sandrine Poteaux and Virginie Meister during the 1999 summer campaign. We greatly thank John Murray for his help to improve the English. Reviews by Steve Lane and Giorgio Cassiani have helped to improve the manuscript. A.F. acknowledges Klaus Gwinner from DLR—Institute of Space Sensor Technology and Planetary Exploration, for providing airborne photographs of Stromboli Volcano. A.F. also acknowledges the Société de Secours des Amis des Sciences for a research grant, and particularly thanks Jean Todt (Sports Director of Formula One Scuderia Ferrari), Giancarlo Minardi (Director of the Minardi Formula One team), Flavio Briatore, (Director of the Formula One Benetton team) and Marc Demougeot (Director of Sparco-France) for their help into obtaining Formula One fireproof equipment. Without it, measurements near the active craters could not have been carried out for security reasons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Finizola.

Additional information

Editorial responsibility: J. Gilbert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finizola, A., Sortino, F., Lénat, JF. et al. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bull Volcanol 65, 486–504 (2003). https://doi.org/10.1007/s00445-003-0276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-003-0276-z

Keywords

Navigation