Skip to main content
Log in

Energetic consequences of resource use diversity in a marine carnivore

  • Physiological ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding how intraspecific variation in the use of prey resources impacts energy metabolism has strong implications for predicting long-term fitness and is critical for predicting population-to-community level responses to environmental change. Here, we examine the energetic consequences of variable prey resource use in a widely distributed marine carnivore, juvenile sand tiger sharks (Carcharias taurus). We used carbon and nitrogen isotope analysis to identify three primary prey resource pools—demersal omnivores, pelagic forage, and benthic detritivores and estimated the proportional assimilation of each resource using Bayesian mixing models. We then quantified how the utilization of these resource pools impacted the concentrations of six plasma lipids and how this varied by ontogeny. Sharks exhibited variable reliance on two of three predominant prey resource pools: demersal omnivores and pelagic forage. Resource use variation was a strong predictor of energetic condition, whereby individuals more reliant upon pelagic forage exhibited higher blood plasma concentrations of very low-density lipoproteins, cholesterol, and triglycerides. These findings underscore how intraspecific variation in resource use may impact the energy metabolism of animals, and more broadly, that natural and anthropogenically driven fluctuations in prey resources could have longer term energetic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: The Great South Bay and NE US Seaboard, Google Earth, Accessed 1/18/21

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All materials are available from the corresponding author upon request.

References

  • Amara R, Galois R (2004) Nutritional condition of metamorphosing sole: spatial and temporal analyses. J Fish Biol 64(1):72–88

    Article  Google Scholar 

  • Arimitsu ML, Piatt JF, Hatch S, Suryan RM, Batten S, Bishop MA, von Biela VR (2021) Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob Change Biol 27(9):1859

    Article  CAS  Google Scholar 

  • Ballantyne JS (1997) Jaws: the inside story. The metabolism of elasmobranch fishes. Comp Biochem Physiol B: Biochem Mol Biol 118(4):703–742

    Article  Google Scholar 

  • Barbini SA, Lucifora LO, Sabadin DE, Figueroa DE (2020) Ecological specialization is associated with high conservation concern in skates (Chondrichthyes, Rajiformes). Anim Conserv 23(2):222–228

    Article  Google Scholar 

  • Bartley TJ, McCann KS, Bieg C, Cazelles K, Granados M, Guzzo MM, McMeans BC (2019) Food web rewiring in a changing world. Nat Ecol Evol 3(3):345–354

    Article  PubMed  Google Scholar 

  • Bastille-Rousseau G, Schaefer JA, Peers MJ, Ellington EH, Mumma MA, Rayl ND, Murray DL (2018) Climate change can alter predator–prey dynamics and population viability of prey. Oecologia 186(1):141–150

    Article  PubMed  Google Scholar 

  • Beckerman A, Petchey OL, Morin PJ (2010) Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct Ecol 24(1):1–6

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161(1):1–28

    Article  PubMed  Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Carballo M, Jiménez JA, Torre ADL, Roset J, Muñoz MJ (2005) A survey of potential stressor-induced physiological changes in carp (Cyprinus carpio) and barbel (Barbus bocagei) along the Tajo River. Environ Toxicol Int J 20(2):119–125

    Article  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46(2):443–453

    Article  CAS  Google Scholar 

  • Caut S, Jowers MJ, Michel L, Lepoint G, Fisk AT (2013) Diet- and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Mar Ecol Prog Ser 492:185–198

    Article  CAS  Google Scholar 

  • Congleton JL, Wagner T (2006) Blood‐chemistry indicators of nutritional status in juvenile salmonids. J Fish Biol 69(2):473–490

    Article  CAS  Google Scholar 

  • Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56(5):707–717

    Article  Google Scholar 

  • Costa-Pereira R, Rudolf VH, Souza FL, Araújo MS (2018) Drivers of individual niche variation in coexisting species. J Anim Ecol 87(5):1452–1464

    Article  PubMed  Google Scholar 

  • Costa-Pereira R, Toscano B, Souza FL, Ingram T, Araújo MS (2019) Individual niche trajectories drive fitness variation. Funct Ecol 33(9):1734–1745

    Article  Google Scholar 

  • Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Mouquet N (2010) Defining and measuring ecological specialization. J Appl Ecol 47(1):15–25

    Article  Google Scholar 

  • Eldøy SH, Bordeleau X, Lawrence MJ, Thorstad EB, Finstad AG, Whoriskey FG, Davidsen JG (2021) The effects of nutritional state, sex and body size on the marine migration behaviour of sea trout. Mar Ecol Prog Ser 665:185–200

    Article  Google Scholar 

  • Elliott KH, Gaston AJ (2008) Mass-length relationships and energy content of fishes and invertebrates delivered to nestling Thick-billed Murres Uria lomvia in the Canadian Arctic, 1981–2007. Mar Ornithol 36:25–34

    Google Scholar 

  • Essington TE, Beaudreau AH, Wiedenmann J (2006) Fishing through marine food webs. Proc Natl Acad Sci 103(9):3171–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming AH, Kellar NM, Allen CD, Kurle CM (2018) The utility of combining stable isotope and hormone analyses for marine megafauna research. Front Marine Sci 338

  • Frisk MG, Miller TJ, Dulvy NK (2005) Life histories and vulnerability to exploitation of elasmobranchs: inferences from elasticity, perturbation and phylogenetic analyses. J Northw Atl Fish Sci 35:27–45

    Article  Google Scholar 

  • Gallagher AJ, Wagner DN, Irschick DJ, Hammerschlag N (2014) Body condition predicts energy stores in apex predatory sharks. Conservation Physiology 2(1):cou022

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher AJ, Skubel RA, Pethybridge HR, Hammerschlag N (2017) Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids. Conserv Physiol. https://doi.org/10.1093/conphys/cox002

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvan DE, Sweeting CJ, Reid WDK (2010) Power of stable isotope techniques to detect size-based feeding in marine fishes. Mar Ecol Progress Ser 407:271–278

    Article  Google Scholar 

  • Galvan DE, Jañez J, Irigoyen AJ (2016a) Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae). J Fish Biol 89:1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Galvan DE, Jañez J, Irigoyen AJ (2016b) Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae). J Fish Biol 89(2):1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Grémillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S, Crawford RJ, Ryan PG (2008) A junk-food hypothesis for gannets feeding on fishery waste. Proc R Soc B: Biol Sci 275(1639):1149–1156

    Article  Google Scholar 

  • Hammerschlag N, Skubel RA, Sulikowski J, Irschick DJ, Gallagher AJ (2018) A comparison of reproductive and energetic states in a marine apex predator (the tiger shark, Galeocerdo cuvier). Physiol Biochem Zool 91(4):933–942

    Article  PubMed  Google Scholar 

  • Hilborn R, Amoroso RO, Bogazzi E, Jensen OP, Parma AM, Szuwalski C, Walters CJ (2017) When does fishing forage species affect their predators? Fish Res 191:211–221

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (1992) Causes and consequences of dietary specialization in surfperches: patch choice and intraspecific competition. Ecology 73(2):402–412

    Article  Google Scholar 

  • Hussey NE, MacNeil MA, Fisk AT (2010) The requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654(1):1–5

    Article  CAS  Google Scholar 

  • IPCC (2021) Climate Change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press (In Press)

  • Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. The Auk 111(4):888–899

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NV, Warr KJ (2002) Linking size-based and trophic analyses of benthic community structure. Mar Ecol Prog Ser 226:77–85

    Article  Google Scholar 

  • Kaduce TL, Folk GE Jr (2002) The essential fatty acids and the diet of polar bears. Pak J Nutr 1:73–78

    Article  Google Scholar 

  • Kim SL, Koch PL (2012) Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ Biol Fishes 95(1):53–63

    Article  Google Scholar 

  • Kim SL, del Rio CM, Casper D, Koch PL (2012a) Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215(14):2495–2500

    Article  PubMed  Google Scholar 

  • Kim SL, Casper DR, Galván-Magaña F, Ochoa-Díaz R, Hernández-Aguilar SB, Koch PL (2012b) Carbon and nitrogen discrimination factors for elasmobranch soft tissues based on a long-term controlled feeding study. Environ Biol Fishes 95(1):37–52

    Article  Google Scholar 

  • Kneebone J, Chisholm J, Skomal G (2014) Movement patterns of juvenile sand tigers (Carcharias taurus) along the east coast of the USA. Mar Biol 161(5):1149–1163

    Article  Google Scholar 

  • Lamb JS, Satgé YG, Jodice PG (2017) Diet composition and provisioning rates of nestlings determine reproductive success in a subtropical seabird. Mar Ecol Prog Ser 581:149–164

    Article  Google Scholar 

  • Lawson JW, Magalhães AM, Miller EH (1998) Important prey species of marine vertebrate predators in the northwest Atlantic: proximate composition and energy density. Mar Ecol Prog Ser 164:13–20

    Article  Google Scholar 

  • Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10(10):937–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemons GE, Eguchi T, Lyon BN, LeRoux R, Seminoff JA (2012) Effects of blood anticoagulants on stable isotope values of sea turtle blood tissue. Aquat Biol 14(3):201–206

    Article  Google Scholar 

  • Loeuille N (2010) Consequences of adaptive foraging in diverse communities. Funct Ecol 24(1):18–27

    Article  Google Scholar 

  • Long RA, Bowyer RT, Porter WP, Mathewson P, Monteith KL, Kie JG (2014) Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecol Monogr 84(3):513–532

    Article  Google Scholar 

  • Maldonado K, Bozinovic F, Newsome SD, Sabat P (2017) Testing the niche variation hypothesis in a community of passerine birds. Ecology 98:903–908

    Article  PubMed  Google Scholar 

  • Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Lazo JP (2012) Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results. Can J Fish Aquat Sci 69(3):551–564

    Article  CAS  Google Scholar 

  • Manlick PJ, Newsome SD (2021) Adaptive foraging in the Anthropocene: can individual diet specialization compensate for biotic homogenization? Front Ecol Environ 19:510–518

    Article  Google Scholar 

  • Manlick PJ, Maldonado K, Newsome SD (2021) Competition mediates individual foraging strategies and fitness consequences in a desert rodent ensemble. J Anim Ecol 90:2806–2818

    Article  PubMed  Google Scholar 

  • Martínez del Rio C, Carleton SA (2012) How fast and how faithful: the dynamics of isotopic incorporation into animal tissues. J Mammal 93(2):353–359

    Article  Google Scholar 

  • Matich P, Bizzarro JJ, Shipley ON (2021) Are stable isotope ratios suitable for describing niche partitioning and individual specialization. Ecol Appl 31:e02392

    Article  PubMed  Google Scholar 

  • McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012) Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl 22(6):1711–1717

    Article  PubMed  Google Scholar 

  • Merrick RL, Chumbley MK, Byrd GV (1997) Diet diversity of Steller sea lions (Eumetopias jubatus) and their population decline in Alaska: a potential relationship. Can J Fish Aquat Sci 54(6):1342–1348

    Article  Google Scholar 

  • Moorhead SG, Gallagher AJ, Merly L, Hammerschlag N (2021) Variation of body condition and plasma energy substrates with life stage, sex, and season in wild-sampled nurse sharks Ginglymostoma cirratum. J Fish Biol 98(3):680–693

    Article  CAS  PubMed  Google Scholar 

  • Morgan C, Shipley ON, Gelsleichter J (2020) Resource-use dynamics of co-occurring chondrichthyans from the First Coast, North Florida, USA. J Fish Biol 96(3):570–579

    Article  CAS  PubMed  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5(8):429–436

    Article  Google Scholar 

  • Newsome SD, Yeakel JD, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammal 93(2):329–341

    Article  Google Scholar 

  • Norton EC, MacFarlane RB, Mohr MS (2001) Lipid class dynamics during development in early life stages of shortbelly rockfish and their application to condition assessment. J Fish Biol 58(4):1010–1024

    Article  CAS  Google Scholar 

  • Olin JA, Hussey NE, Grgicak-Mannion A, Fritts MW, Wintner SP, Fisk AT (2013) Variable δ15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models. PLoS ONE 8(10):e77567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olin JA, Cerrato RM, Nye JA, Sagarese SR, Sclafani M, Zacharias JP, Frisk MG (2020) Evidence for ecosystem changes within a temperate lagoon following a hurricane-induced barrier island breach. Estuaries Coasts 43(7):1625–1639

    Article  Google Scholar 

  • Otway NM, Bradshaw CJ, Harcourt RG (2004) Estimating the rate of quasi-extinction of the Australian grey nurse shark (Carcharias taurus) population using deterministic age-and stage-classified models. Biol Cons 119(3):341–350

    Article  Google Scholar 

  • Pardo SA, Kindsvater HK, Reynolds JD, Dulvy NK (2016) Maximum intrinsic rate of population increase in sharks, rays, and chimaeras: the importance of survival to maturity. Can J Fish Aquat Sci 73(8):1159–1163

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308(5730):1912–1915

    Article  CAS  PubMed  Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92(10):823–835

    Article  Google Scholar 

  • Prober SM, Doerr VA, Broadhurst LM, Williams KJ, Dickson F (2019) Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol Monogr 89(1):e01333

    Article  Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15(1):523–575

    Article  Google Scholar 

  • Rangel SB, Hammerschlag N, Sulikowski JA, Moreira RG (2021) Physiological markers suggest energetic and nutritional adjustments in male sharks linked to reproduction. Oecologia 196(4):989–1004

    Article  Google Scholar 

  • Reum JC, Williams GD, Harvey CJ, Andrews KS, Levin PS (2020) Trophic ecology of a large-bodied marine predator, bluntnose sixgill shark Hexanchus griseus, inferred using stable isotope analysis. Environ Biol Fishes 103(2):147–162

    Article  Google Scholar 

  • Rippetoe TH (1993) Production and energetics of Atlantic menhaden in Chesapeake Bay. Master's thesis, University of Maryland, College

  • Rosen DA, Trites AW (2000) Pollock and the decline of Steller sea lions: testing the junk-food hypothesis. Can J Zool 78(7):1243–1250

    Article  Google Scholar 

  • Shipley ON, Matich P (2020) Studying animal niches using bulk stable isotope ratios: an updated synthesis. Oecologia 193:27–51

    Article  PubMed  Google Scholar 

  • Shipley ON, Olin JA, Power M, Cerrato RM, Frisk MG (2019) Questioning assumptions of trophic behavior in a broadly ranging marine predator guild. Ecography 42(5):1037–1049

    Article  Google Scholar 

  • Shipley ON, Newton AH, Frisk MG, Henkes GA, Walters H, LaBelle J, Hyatt M, Camhi M, Olin JA (2021a) Telemetry validated nitrogen stable isotope clocks identify ocean-to-estuarine habitat shifts in mobile organisms. Methods Ecol Evol 12:897–908

    Article  Google Scholar 

  • Shipley ON, Henkes GA, Gelsleichter J, Morgan CR, Schneider EV, Talwar BS, Frisk MG (2021b) Shark tooth collagen stable isotopes (δ15N and δ13C) as ecological proxies. J Anim Ecol 90:2188–2201

    Article  PubMed  Google Scholar 

  • Smith JA, Mazumder D, Suthers IM, Taylor MD (2013) To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol 4(7):612–618

    Article  Google Scholar 

  • Speers-Roesch B, Treberg JR (2010) The unusual energy metabolism of elasmobranch fishes. Comp Biochem Physiol Mol Integr Physiol 155(4):417–434

    Article  Google Scholar 

  • Spitz J, Jouma’a J (2013) Variability in energy density of forage fishes from the Bay of Biscay (north-east Atlantic Ocean): reliability of functional grouping based on prey quality. J Fish Biol 82(6):2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton, Princeton University Press

    Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096

    Article  PubMed  PubMed Central  Google Scholar 

  • Taborsky B (2006) The influence of juvenile and adult environments on life-history trajectories. Proc R Soc B: Biol Sci 273(1587):741–750

    Article  Google Scholar 

  • Tartu S, Lille-Langøy R, Størseth TR, Bourgeon S, Brunsvik A, Aars J, Goksøyr A, Jenssen BM, Polder A, Thiemann GW, Torget V, Routti, H (2017) Multiple-stressor effects in an apex predator: combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Sci Rep 7(1):1–12

  • Thomas SM, Crowther TW (2015) Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84(3):861–870

    Article  PubMed  Google Scholar 

  • Toft S (1999) Prey choice and spider fitness. J Arachnolo 27:301–307

    Google Scholar 

  • Valera F, Wagner RH, Romero-Pujante M, Gutiérrez JE, Rey PJ (2005) Dietary specialization on high protein seeds by adult and nestling serins. Condor 107(1):29–40

    Article  Google Scholar 

  • Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10(1):e0116182

    Article  PubMed  PubMed Central  Google Scholar 

  • von Biela VR, Arimitsu ML, Piatt JF, Heflin B, Schoen SK, Trowbridge JL, Clawson CM (2019) Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar Ecol Prog Ser 613:171–182

    Article  Google Scholar 

  • Watanuki Y (1992) Individual diet difference, parental care and reproductive success in slaty-backed gulls. Condor 94(1):159–171

    Article  Google Scholar 

  • Weideli OC, Kiszka JJ, Matich P, Heithaus MR (2019) Effects of anticoagulants on stable-isotope values (δ13C and δ15N) of shark blood components. J Fish Biol 95(6):1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Whiteman JP, Frank N, Greller KA, Harlow HJ, Ben-David M (2013) Characterization of blood lipoproteins and validation of cholesterol and triacylglycerol assays for free-ranging polar bears (Ursus maritimus). J Vet Diagn Invest 25(3):423–427

    Article  PubMed  Google Scholar 

  • Woo KJ, Elliott KH, Davidson M, Gaston AJ, Davoren GK (2008) Individual specialization in diet by a generalist marine predator reflects specialization in foraging behavior. J Anim Ecol 77(6):1082–1091

    Article  PubMed  Google Scholar 

  • Wyatt AS, Matsumoto R, Chikaraishi Y, Miyairi Y, Yokoyama Y, Sato K, Nagata T (2019) Enhancing insights into foraging specialization in the world’s largest fish using a multi-tissue, multi-isotope approach. Ecol Monogr 89(1):e01339

    Article  Google Scholar 

Download references

Acknowledgements

C. Witek, C. Capri and J. Miller provided fishing support. C. Cray and the University of Miami Avian & Wildlife Laboratory for plasma lipid diagnostic testing.

Funding

This work was supported by the Wildlife Conservation Society, the Sarah K. de Coizart Article TENTH Perpetual Charitable Trust, Stony Brook University and New York State Department for Environmental Conservation (NYSDEC).

Author information

Authors and Affiliations

Authors

Contributions

ONS, PJM, ALN, SDN, and JAO conceived project. ONS, JAO, ALN, JL, HW, and MC conducted fieldwork. ONS, JAO, AN, and GAH conducted laboratory analyses. ONS and PM analyzed the data. MGF, JAO, JAN, and RMC provided project funding. ONS wrote the paper with significant input from PJM, SDN, and JAO. All authors provided additional comments and approved the final version of the manuscript.

Corresponding author

Correspondence to Oliver N. Shipley.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All research was conducted under state permits acquired by the Wildlife Conservation Society and Stony Brook University from the New York State Department for Environmental Conservation (NYDEC) License to Collect or Possess: Scientific, permits nos. 1036; 1409; 1145; 1110, and 2305.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Yannis Papastamatiou.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 1 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipley, O.N., Manlick, P.J., Newton, A.L. et al. Energetic consequences of resource use diversity in a marine carnivore. Oecologia 200, 65–78 (2022). https://doi.org/10.1007/s00442-022-05241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-022-05241-5

Keywords

Navigation