Skip to main content
Log in

Anthropogenic nest sites provide warmer incubation environments than natural nest sites in a population of oviparous reptiles near their northern range limit

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Oviposition site choice affects a host of offspring phenotypes and directly impacts maternal fitness. Recent evidence suggests that oviparous reptiles often select nest sites where the landscape has been altered by anthropogenic activity, whereas natural nest sites are less often used. We leverage a long-term study of snapping turtle (Chelydra serpentina) to identify natural nest sites and anthropogenic nest sites and to compare habitat variables among nest site types. Natural and anthropogenic nest sites did not differ in average canopy closure, distance to nearest water, substrate composition, or aspect. However, anthropogenic nest sites had less ground-level vegetation and greater soil brightness, and were 3.3 °C warmer than natural nests during incubation. We used the Schoolfield model of poikilotherm development to assess differences in development rate between natural and anthropogenic nests. Because of the difference in temperature, embryos in anthropogenic nests were predicted to have undergone nearly twice as much development as embryos in natural nests during incubation. We outline why the evolution of fast embryonic development rate cannot compensate indefinitely for the low temperature incubation regimes that become increasingly prevalent at northern range margins, thereby underlining why maternal nest site choice of relatively warm anthropogenic sites may help oviparous reptiles persist in thermally constrained environments. Future research should aim to quantify both the thermal benefits of anthropogenic nest sites, as well as associated fitness costs (e.g., increased adult mortality) to elucidate whether anthropogenic disturbance of the landscape can be an ecological trap or serve a net benefit to some reptiles in northern environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Jacqueline D. Litzgus and Ronald J. Brooks for collaborative use of long-term study site and system; Algonquin Park/Ontario Parks for permission to conduct research; and Algonquin Wildlife Research Station for field accommodation; Nicole Brunet, Taylor Wynia, and Steven Kell for assistance in the field; Lin Schwarzkopf and one anonymous reviewer for helpful comments that improved this paper. All applicable institutional and national guidelines for the care and use of animals were followed.

Funding

We acknowledge and thank the University of Toronto Faculty of Arts and Science Research Excursion Program, an NSERC Discovery Grant (# 2016-06469) to NR, a postdoctoral fellowship from the University of Toronto Department of Ecology and Evolutionary Biology to MAG, and Algonquin Park/Ontario Parks for funding that supported this research.

Author information

Authors and Affiliations

Authors

Contributions

PDM conceived and designed the experiment. EAF and PDM conducted fieldwork. EAF, MAG, and NR analyzed the data. EAF, PDM, MAG, and NR wrote the manuscript.

Corresponding author

Correspondence to Elizabeth Ann Francis.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Communicated by Lin Schwarzkopf.

Our findings of a thermal trade-off between anthropogenic and natural nests explains one of the most pervasive threats to turtle populations globally: road mortality and roads as an ecological trap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, E.A., Moldowan, P.D., Greischar, M.A. et al. Anthropogenic nest sites provide warmer incubation environments than natural nest sites in a population of oviparous reptiles near their northern range limit. Oecologia 190, 511–522 (2019). https://doi.org/10.1007/s00442-019-04383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04383-3

Keywords

Navigation