Skip to main content
Log in

Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods

  • Plant-microbe-animal interactions - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczewski JZ, Fargey PJ, Laarveld B, Gunn A, Flood PF (1998) The influence of fatness on the likelihood of early-winter pregnancy in muskoxen (Ovibos moschatus). Theriogenology 50:605–614

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, Hansen BU (2009) Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct Antarct Alp Res 41:164–173

    Article  Google Scholar 

  • Berg TB, Schmidt NM, Høye TT, Aastrup PJ, Hendrichsen DK, Forchhammer MC, Klein DR (2008) High-arctic plant-herbivore interactions under climate influence. Adv Ecol Res 40:275–298

    Article  Google Scholar 

  • Blix AS (2005) Arctic animals and their adaptations to life on the edge. Tapir Academic Press, Trondheim

    Google Scholar 

  • Boag B, Neilson R, Robinson D, Scrimgeour CM, Handley LL (1997) Wild rabbit host and some parasites show trophic-level relationships for δ13C and δ15 N: a first report. Isot Environ Healt S 33:81–85

    CAS  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol S 42:411–440

    Article  Google Scholar 

  • Bokhorst S, Pedersen SH, Brucker L, Anisimov O, Bjerke JW, Brown RD, Ehrich D, Essery RLH, Heilig A, Ingvander S, Johansson C, Johansson M, Jónsdóttir IS, Inga N, Luojus K, Macelloni G, Mariash H, McLennan D, Rosqvist GN, Sato A, Savela H, Schneebeli M, Sokolov A, Sokratov SA, Terzago S, Vikhamar-Schuler D, Williamson S, Qiu Y, Callaghan TV (2016) Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45:516–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaghan T, Johansson M, Brown R, Groisman P, Labba N, Radionov V, Bradley R, Blangy S, Bulygina O, Christensen T, Colman J, Essery R, Forbes B, Forchhammer M, Golubev V, Honrath R, Juday G, Meshcherskaya A, Phoenix G, Pomeroy J, Rautio A, Robinson D, Schmidt NM, Serreze M, Shevchenko V, Shiklomanov A, Shmakin A, Sköld P, Sturm M, Mk Woo, Wood E (2011) Multiple effects of changes in Arctic snow cover. Ambio 40:32–45

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Clare EL (2014) Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol Appl 7:1144–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404

    Article  PubMed  Google Scholar 

  • Codron D, Sponheimer M, Codron J, Hammer S, Tschuor A, Braun U, Bernasconi S, Clauss M (2012) Tracking the fate of digesta 13C and 15N compositions along the ruminant gastrointestinal tract: does digestion influence the relationship between diet and faeces? Eur J Wildl Res 58:303–313

    Article  Google Scholar 

  • Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Mol Ecol Resour 13:620–633

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  PubMed  CAS  Google Scholar 

  • Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L (2008) Soil and plant community-characteristics and dynamics at Zackenberg. Adv Ecol Res 40:223–248

    Article  Google Scholar 

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 73–98

    Chapter  Google Scholar 

  • Gray DR (1993) Behavioural adaptations to Arctic winter: shelter seeking by Arctic hare (Lepus arcticus). Arctic 46:340–353

    Google Scholar 

  • Gustine DD, Barboza PS, Lawler JP, Arthur SM, Shults BS, Persons K, Adams LG (2011) Characteristics of foraging sites and protein status in wintering muskoxen: insights from isotopes of nitrogen. Oikos 120:1546–1556

    Article  CAS  Google Scholar 

  • Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B (2008) Present-day climate at Zackenberg. Adv Ecol Res 40:111–149

    Article  Google Scholar 

  • Hansen BB, Grøtan V, Aanes R, Sæther BE, Stien A, Fuglei E, Ims RA, Yoccoz NG, Pedersen ÅØ (2013) Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science 339:313–315

    Article  PubMed  CAS  Google Scholar 

  • Hardy CM, Krull ES, Hartley DM, Oliver RL (2010) Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol Ecol 19:197–212

    Article  PubMed  CAS  Google Scholar 

  • Henry GHR, Svoboda J, Freedman B (1990) Standing crop and net production of sedge meadows of an ungrazed polar desert oasis. Can J Bot 68:2660–2667

    Article  Google Scholar 

  • Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77

    Article  Google Scholar 

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: sIBER—stable isotope bayesian ellipses in R. J Anim Ecol 80:595–602

    Article  PubMed  Google Scholar 

  • Klein DR, Bay C (1991) Diet selection by vertebrate herbivores in the high arctic of Greenland. Holarctic Ecol 14:152–155

    Google Scholar 

  • Klein DR, Bay C (1994) Resource partitioning by mammalian herbivores in the high Arctic. Oecologia 97:439–450

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Leuzinger S, Riedl S, Siegwolf RT, Streule L (2016) Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Bot 126:153–166

    Article  Google Scholar 

  • Krebs CJ (1998) Ecological methodology. Benjamin-Collins, Menlo Park

    Google Scholar 

  • Kristensen DK, Kristensen E, Forchhammer MC, Michelsen A, Schmidt NM (2011) Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C-3 plants, faeces and wool. Can J Zool 89:892–899

    Article  CAS  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Leslie DM Jr, Bowyer RT, Jenks JA (2008) Facts from feces: nitrogen still measures up as a nutritional index for mammalian herbivores. J Wildl Manage 72:1420–1433

    Article  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EBMnet Journal 17:10–12

    Google Scholar 

  • Mech LD (2000) Lack of reproduction in Muskoxen and Arctic hares caused by early winter? Arctic 53:69–71

    Article  Google Scholar 

  • Mosbacher JB, Kristensen DK, Michelsen A, Stelvig M, Schmidt NM (2016a) Quantifying muskox plant biomass removal and spatial relocation of nitrogen in a High Arctic tundra ecosystem. Arct Antarct Alp Res 48:229–240

    Article  Google Scholar 

  • Mosbacher JB, Michelsen A, Stelvig M, Hendrichsen DK, Schmidt NM (2016b) Show me your rump hair and I will tell you what you ate—the dietary history of muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 11:e0152874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P (2018) Diet tracing in ecology: method comparison and selection. Methods Ecol Evol 9:278–291

    Article  Google Scholar 

  • Norbury GL (1988) Microscopic analysis of herbivore diets—a problem and a solution. Wildl Res 15:51–57

    Article  Google Scholar 

  • Pedersen AO, Lier M, Routti H, Christiansen HH, Fuglei E (2006) Co-feeding between Svalbard rock ptarmigan (Lagopus muta hyperborea) and Svalbard reindeer (Rangifer tarandus platyrhynchus). Arctic 59:61–64

    Google Scholar 

  • Pedersen SH, Liston GE, Tamstorf MP, Westergaard-Nielsen A, Schmidt NM (2015) Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems 18:839–856

    Article  CAS  Google Scholar 

  • Pedersen SH, Tamstorf MP, Abermann J, Westergaard-Nielsen A, Lund M, Skov K, Sigsgaard C, Mylius MR, Hansen BU, Liston GE, Schmidt NM (2016) Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations. Arct Antarct Alp Res 48:653–671

    Article  Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Article  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  PubMed  CAS  Google Scholar 

  • Putman RJ (1984) Facts from faeces. Mammal Rev 14:79–97

    Article  Google Scholar 

  • Roslin T, Majaneva S (2016) The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! Genome 59:603–628

    Article  PubMed  CAS  Google Scholar 

  • Schaefer JA, Messier F (1995) Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18:333–344

    Article  Google Scholar 

  • Schaefer JA, Stevens SD, Messier F (1996) Comparative winter habitat use and associations among herbivores in the high arctic. Arctic 49:387–391

    Article  Google Scholar 

  • Schmidt NM, Berg TB, Forchhammer MC, Hendrichsen DK, Kyhn LA, Meltofte H, Høye TT (2008) Vertebrate predator-prey interactions in a seasonal environment. Adv Ecol Res 40:345–370

    Article  Google Scholar 

  • Schmidt NM, Pedersen SH, Mosbacher JB, Hansen LH (2015) Long-term patterns of muskox (Ovibos moschatus) demographics in high arctic Greenland. Polar Biol 38:1667–1675

    Article  Google Scholar 

  • Schmidt NM, van Beest FM, Mosbacher JB, Stelvig M, Hansen LH, Grøndahl C (2016) Ungulate movement in an extreme seasonal environment: year-round movement patterns of high-arctic muskoxen. Wildlife Biol 22:253–267

    Article  Google Scholar 

  • Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder NM (2000) Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evol Dev 2:348–359

    Article  PubMed  CAS  Google Scholar 

  • Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sønstebø JH, Ims RA, Yoccoz NG, Taberlet P (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Soininen EM, Gauthier G, Bilodeau F, Berteaux D, Gielly L, Taberlet P, Gussarova G, Bellemain E, Hassel K, Stenøien HK, Epp L, Schrøder-Nielsen A, Brochmann C, Yoccoz NG (2015) Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 10:e0115335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sponheimer M, Robinson T, Ayliffe L, Passey B, Roeder B, Shipley L, Lopez E, Cerling T, Dearing D, Ehleringer J (2003) An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Can J Zool 81:871–876

    Article  CAS  Google Scholar 

  • Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79

    Article  PubMed  Google Scholar 

  • Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD (2015) A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96:318–324

    Article  PubMed  Google Scholar 

  • Syväranta J, Lensu A, Marjomäki TJ, Oksanen S, Jones RI (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 8:e56094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14

    Article  PubMed  CAS  Google Scholar 

  • Thing H, Klein DR, Jingfors K, Holt S (1987) Ecology of Muskoxen in Jameson Land, Northeast Greenland. Holarctic Ecol 10:95–103

    Google Scholar 

  • Thomas VG (1987) Similar winter energy strategies of grouse, hares and rabbits in northern biomes. Oikos 50:206–212

    Article  Google Scholar 

  • Traugott M, Kamenova S, Ruess L, Seeber J, Plantegenest M (2013) Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Adv Ecol Res 49:177–224

    Article  Google Scholar 

  • Vesterinen EJ, Ruokolainen L, Wahlberg N, Peña C, Roslin T, Laine VN, Vasko V, Sääksjärvi IE, Norrdahl K, Lilley TM (2016) What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol Ecol 25:1581–1594

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  • Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergard M, Gussarova G, Haile J, Craine J, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Brathen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sonstebo JH, Murton J, Sher A, Rasmussen M, Ronn R, Mourier T, Cooper A, Austin J, Moller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MT, Kjaer KH, Orlando L, Brochmann C, Taberlet P (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51

    Article  PubMed  CAS  Google Scholar 

  • Wirta HK, Hebert PD, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci USA 111:1885–1890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wirta H, Várkonyi G, Rasmussen C, Kaartinen R, Schmidt NM, Hebert P, Barták M, Blagoev G, Disney H, Ertl S, Gjelstrup P, Gwiazdowicz D, Huldén J, Ilmonen J, Jakovlev J, Jaschhof M, Kahanpää J, Kankaanpää T, Krogh PH, Labbee R, Lettner C, Michelsen V, Nielsen SA, Nielsen TR, Paasivirta L, Pedersen S, Pohjoismäki J, Salmela J, Vilkamaa P, Väre H, von Tschirnhaus M, Roslin T (2016) Establishing a community-wide DNA barcode library as a new tool for arctic research. Mol Ecol Resour 16:809–822

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Greenland Ecosystem Monitoring programme for access to ecosystem data, and Aarhus University for the logistic support. Arctic Research Centre, Aarhus University, is thanked for financial support of the winter field campaign. We thank Aage V Jensen Charity Foundation, the Danish National Research Foundation (CENPERM DNRF100), Jane and Aatos Erkko Foundation, and the Academy of Finland (Grant Number 276909) for financial support. The Finnish Functional Genomics Centre, University of Turku, Åbo Akademi, Biocenter Finland is thanked for supporting the molecular analyses. The authors wish to acknowledge CSC—IT Center for Science, Finland, for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

NMS, TR and AM conceived the ideas and designed methodologies; NMS and JBM collected samples. NMS, EJV and AM conducted the analyses; NMS and TR led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Niels M. Schmidt.

Additional information

Communicated by Anders Angerbjörn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, N.M., Mosbacher, J.B., Vesterinen, E.J. et al. Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods. Oecologia 187, 689–699 (2018). https://doi.org/10.1007/s00442-018-4147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4147-x

Keywords

Navigation