Skip to main content

Advertisement

Log in

Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aranguren-Riaño N, Guisande C, Ospina R (2011) Factors controlling crustacean zooplankton species richness in Neotropical lakes. J Plankton Res 33:1295–1303

    Article  CAS  Google Scholar 

  • Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88:1675–1686

    Article  PubMed  Google Scholar 

  • Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813

    Article  Google Scholar 

  • Boechat IG, Adrian R (2005) Biochemical composition of algivorous freshwater ciliates: you are not what you eat. FEMS Microbiol Ecol 53:393–400

    Article  PubMed  CAS  Google Scholar 

  • Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233–241

    Article  CAS  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009) Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecol Lett 12:475–487

    Article  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Cyr H, Curtis JM (1999) Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118:306–315

    Article  PubMed  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46(46):225–340

    Article  PubMed  Google Scholar 

  • DeMott WR (1986) The role of taste in food selection by fresh-water zooplankton. Oecologia 69:334–340

    Article  PubMed  Google Scholar 

  • Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81:2662–2679

    Article  Google Scholar 

  • Donato JC (2001) Fitoplancton de los lagos andinos del norte de Sudamerica (Colombia): composicion y factores de distribucion. Academia Colombiana de Ciencias Exactas, Fisicas y Naturales Bogota, Colombia

    Google Scholar 

  • Forsberg BR, Araujolima C, Martinelli LA, Victoria RL, Bonassi JA (1993) Autotrophic carbon-sources for fish of the central Amazon. Ecology 74:643–652

    Article  Google Scholar 

  • Gliwicz ZM (1990) Food thresholds and body size in cladocerans. Nature 343:638–640

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Guisande C (2006) Biochemical fingerprints in zooplankton. Limnetica 25:369–376

    Google Scholar 

  • Guisande C, Maneiro I, Riveiro I (1999) Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons. Limnol Oceanogr 44:691–696

    Article  CAS  Google Scholar 

  • Guisande C, Maneiro I, Riveiro I, Barreiro A, Pazos Y (2002) Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar Ecol Prog Ser 239:147–156

    Article  CAS  Google Scholar 

  • Guisande C, Bartumeus F, Ventura M, Catalan J (2003) Role of food partitioning in structuring the zooplankton community in mountain lakes. Oecologia 136:627–634

    Article  PubMed  CAS  Google Scholar 

  • Guisande C, Barreiro A, Vaamonde A (2011) Tratamiento de datos con R. Statistica y SPSS, Ediciones Díaz de Santos, Madrid

    Google Scholar 

  • Hebert MP, Beisner BE, Maranger R (2016) A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology 97:1069–1080

    Article  PubMed  Google Scholar 

  • Hebert MP, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39:3–12

    Article  Google Scholar 

  • Hernández J, Hurtado A, Ortiz R, Walschburger T (1992) Unidades biogeográficas de Colombia. In: Halffter G (ed) La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Mexico, pp 105–151

    Google Scholar 

  • Kerfoot WC, Kirk KL (1991) Degree of taste discrimination among suspension-feeding cladocerans and copepods—implications for detritivory and herbivory. Limnol Oceanogr 36:1107–1123

    Article  Google Scholar 

  • Kling GW, Fry B, Obrien WJ (1992) Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73:561–566

    Article  Google Scholar 

  • Koroleff F (1969) Direct determination of ammonia in natural waters as Indophenol Blue. In: ICES, information on techniques and methods for seawater analysis, an interlaboratory report, pp 19–22

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberte E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology, R package version 1.2

  • Leibold MA (1995) The niche concept revisited—mechanistic models and community context. Ecology 76:1371–1382

    Article  Google Scholar 

  • Litchman E, Ohman MD, Kiorboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484

    Article  Google Scholar 

  • Matthews B, Mazumder A (2006) Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology 87:2800–2812

    Article  PubMed  Google Scholar 

  • Naeem S (2002) Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology 83:2925–2935

    Article  Google Scholar 

  • Nevalainen L, Luoto TP (2017) Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Funct Ecol 31:488–498

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    Article  PubMed  Google Scholar 

  • Petry P, Bayley PB, Markle DF (2003) Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. J Fish Biol 63:547–579

    Article  Google Scholar 

  • Shurin JB, Winder M, Adrian R, Keller W, Matthews B, Paterson AM, Paterson MJ, Pinel-Alloul B, Rusak JA, Yan ND (2010) Environmental stability and lake zooplankton diversity—contrasting effects of chemical and thermal variability. Ecol Lett 13:453–463

    Article  PubMed  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  PubMed  Google Scholar 

  • Sommer U, Sommer F, Santer B, Jamieson C, Boersma M, Becker C, Hansen T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:545–550

    Article  Google Scholar 

  • Thouret J (1981) Una mapa geomorfoestructural de los Andes colombianos. Instituto Geografico “Agustin Codazzi” Bogota, Colombia

    Google Scholar 

  • vanWandelen C, Cohen SA (1997) Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate-derivatized amino acid mixtures. J Chromatogr A 763:11–22

    Article  CAS  Google Scholar 

  • Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Vogt RJ, Peres-Neto PR, Beisner BE (2013) Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122:1700–1709

    Article  Google Scholar 

  • Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NA was supported by a graduate fellowship from Colciencias 1892–2006. JS was supported by a Fulbright Colombia Fellowship, JS and NTJ were supported by NSF DEB 1457737.

Author information

Authors and Affiliations

Authors

Contributions

NJA, CG, AB and SD collected field samples and analyzed amino acids in the laboratory, NJA, JBS and NTJ analyzed the data, and all authors wrote and edited the manuscript.

Corresponding author

Correspondence to Jonathan B. Shurin.

Additional information

Communicated by Ulrich Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranguren-Riaño, N.J., Guisande, C., Shurin, J.B. et al. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia 187, 719–730 (2018). https://doi.org/10.1007/s00442-018-4130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4130-6

Keywords

Navigation