Skip to main content

Advertisement

Log in

Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds

  • Behavioral ecology –original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration, and intensity just as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affects vegetation phenology, while far fewer have examined how the breeding phenology of arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and white-crowned sparrows, Zonotrichia leucophrys gambelii, across five consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, including the timing of arrival on breeding grounds, territory establishment, and clutch initiation. Spring temperatures, precipitation, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover. In response, we found a significant delay in breeding-cycle phenology for both study species in 2013 relative to other study years: the first bird observed was delayed by 6–10 days, with mean arrival by 3–6 days, territory establishment by 6–13 days, and clutch initiation by 4–10 days. Further, snow cover, temperature, and precipitation during the territory establishment period were important predictors of clutch initiation dates for both species. These findings suggest that Arctic-breeding passerine communities may have the flexibility required to adjust breeding phenology in response to the increasingly extreme and unpredictable environmental conditions—although future generations may encounter conditions that exceed their current range of phenological flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Alexeev V, Walsh J, Tachibana Y (2011) Polar amplification: is atmospheric heat transport important? In: Geological Society of America Abstracts with Programs, 45, 87

  • Alldredge MW, Simons TR, Pollock KH (2007) Factors affecting aural detections of songbirds. Ecol Appl 17:948–955

    Article  PubMed  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintanja R, Selten FM (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509:479–482

    Article  CAS  PubMed  Google Scholar 

  • Bintanja R, Van der Linden EC (2013) The changing seasonal climate in the Arctic. Scientific reports, 3

  • Boelman NT, Gough L, Wingfield J et al (2015) Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra. Glob Change Biol 21:1508–1520

    Article  Google Scholar 

  • Bolduc E, Casajus N, Legagneux P et al (2013) Terrestrial arthropod abundance and phenology in the Canadian Arctic: modelling resource availability for Arctic-nesting insectivorous birds. Can Entomol 145:155–170

    Article  Google Scholar 

  • Bollmann K, Brodmann PA, Reyer HU (1997) Territory quality and reproductive success: can water pipits Anthus spinoletta assess the relationship reliably? ARDEA-WAGENINGEN 85:83–98

    Google Scholar 

  • Boonstra R (2004) Coping with changing northern environments: the role of the stress axis in birds and mammals. Integr Comp Biol 44:95–108

    Article  PubMed  Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298

    Article  CAS  PubMed  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  CAS  PubMed  Google Scholar 

  • Buckland ST (2006) Point-transect surveys for songbirds: robust methodologies. Auk 123:345–357

    Article  Google Scholar 

  • Bush RR, Mosteller F (1955) Stochastic models for learning. John Wiley & Son, New York

  • Byrkjedal I (1980) Nest predation in relation to snow-cover: a possible factor influencing the start of breeding in shorebirds. Ornis Scandinavica (Scandinavian Journal of Ornithology) 11(3):249–252. doi:10.2307/3676131

    Article  Google Scholar 

  • Charmantier A, Mccleery RH et al (2008) Adaptive phenotypic plasticity in response to climate change in a change in a wild bird population. Science 800:800–804. doi:10.1126/science.1157174

    Article  Google Scholar 

  • Clavero M, Villero D, Brotons L (2011) Climate change or land use dynamics: do we know what climate change indicators indicate. PLoS ONE 6:e18581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007

    Article  Google Scholar 

  • Coppack T, Both C (2002) Predicting life-cycle adaptation of migratory birds to global climate change. Ardea 90:369–378

    Article  Google Scholar 

  • Crick HQ (2004) The impact of climate change on birds. Ibis 146:48–56

    Article  Google Scholar 

  • Crick HQ, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Custer TW, Pitelka FA (1977) Demographic features of a Lapland longspur population near Barrow, Alaska. Auk 94:505–525

    Google Scholar 

  • Dawson A, King VM, Bentley GE, Ball GF (2001) Photoperiodic Control of Seasonality in Birds. J Biol Rhythms. doi:10.1177/074873001129002079

    PubMed  Google Scholar 

  • Derksen C, Brown R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophysical Research Letters, 39

  • Doxa A, Robert A, Crivelli A et al (2012) Shifts in breeding phenology as a response to population size and climatic change: a comparison between short- and long-distance migrant species. Auk 129:753–762. doi:10.1525/auk.2012.11213

    Article  Google Scholar 

  • Dunn PO, Winkler DW (1999) Climate change has affected the breeding date of tree swallows throughout North America. Proc R Soc Lon B 266:2487–2490

    Article  CAS  Google Scholar 

  • Environmental data center (2014) Meteorological monitoring program at Toolik, Alaska Toolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775 http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php. Accessed 13 Mar 2015

  • Farner DS, Follett BK (1966) Light and other environmental factors affecting avian reproduction. J Anim Sci 25:90–115

    Article  PubMed  Google Scholar 

  • Finch CE, Rose MR (1995) Hormones and the physiological architecture of life history evolution. Quarterly Review of Biology 70(1):1–52

    Article  CAS  PubMed  Google Scholar 

  • Fox AD, Francis IS, Madsen J, Stroud JM (1987) The breeding biology of the Lapland bunting, Calcarius lapponicus, in West Greenland during two contrasting years. Ibis 129:541–552

    Article  Google Scholar 

  • Gienapp P, Hemerik L, Visser ME (2005) A new statistical tool to predict phenology under climate change scenarios. Glob Change Biol 11:600–606

    Article  Google Scholar 

  • Gilg O, Kovacs KM, Aars J et al (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann NY Acad Sci 1249:166–190

    Article  PubMed  Google Scholar 

  • Grabowski MM, Doyle FI, Reid DG, Mossop D, Talarico D (2013) Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol 36:1097–1105

    Article  Google Scholar 

  • Grinnell LI (1944) Notes on breeding Lapland longspurs at Churchill, Manitoba. Auk 61:554–560

    Article  Google Scholar 

  • Holmes RT (2007) Understanding population change in migratory songbirds: long-term and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis 149:2–13

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007) Rapid advancement of spring in the High Arctic. Curr Biol 17:R449–R451

    Article  PubMed  Google Scholar 

  • Hua N, Piersma T, Ma Z (2013) Three-phase fuel deposition in a long-distance migrant, the red knot (Calidris canutus piersmai), before the flight to high arctic breeding grounds. PLoS ONE 8:e62551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt K, Wingfield JC, Astheimer LB, Buttemer WA, Hahn TP (1995) Temporal patterns of territorial behavior and circulating testosterone in the lapland longspur and other Arctic passerines. Am Zool 35:274–284

    Article  CAS  Google Scholar 

  • Ims RA, Henden JA (2012) Collapse of an arctic bird community resulting from ungulate-induced loss of erect shrubs. Biol Cons 149:2–5

    Article  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci 97:1630–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Hoboken, Wiley, NJ

  • Kendeigh SC (1969) Tolerance of cold and Bergmann’s rule. Auk 86(1):13–25

    Article  Google Scholar 

  • Krause JS, Chmura HE, Pérez JH, Quach LN, Asmus A, Word KR, McGuigan MA, Sweet SK, Meddle SL, Gough L, Boelman N, Wingfield JC (2015) Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel’s white-crowned sparrow. Oecologia. doi:10.1007/s00442-015-3447-7

  • Krause JS, Pérez JH, Chmura HE, Sweet SK, Meddle SL, Hunt KE, Gough L, Boelman N, Wingfield JC (2016) The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen Comp Endocrinol 237:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel KE (2003) North American trends in extreme precipitation. Nat Hazards 29:291–305

    Article  Google Scholar 

  • Liebezeit JR, Gurney KEB, Budde M, Zack S, Ward D (2014) Phenological advancement in arctic bird species: relative importance of snow melt and ecological factors. Polar Biol 37:1309–1320

    Article  Google Scholar 

  • Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315

    Article  PubMed  Google Scholar 

  • Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Ann Rev Ecol Sys 18(1):453–487

    Article  Google Scholar 

  • Martin K (2001) Wildlife in alpine and sub-alpine habitats. Johnson DH

  • Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185

    Article  PubMed  Google Scholar 

  • McCabe GJ, Clark MP, Serreze MC (2001) Trends in Northern Hemisphere surface cyclone frequency and intensity. J Clim 14:2763–2768

    Article  Google Scholar 

  • McKinnon EA, Macdonald CM, Gilchrist HG, Lowve OP (2016) Spring and fall migration phenology of an Arctic-breeding passerine. J Ornithol 157:681–693

    Article  Google Scholar 

  • Meltofte H, Høye TT, Schmidt NM, Forchhammer MC (2007) Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol 30:601–606

    Article  Google Scholar 

  • Meltofte H, Høye TT, Schmidt NM (2008) Effects of food availability, snow and predation on breeding performance of waders at Zackenberg. Adv Ecol Res 40:325–343

    Article  Google Scholar 

  • Moe B, Stempniewicz L, Jakubas D et al (2009) Climate change and phenological responses of two seabird species breeding in the high-Arctic. Mar Ecol Prog Ser 393:235–246

    Article  Google Scholar 

  • Morton ML (1978) Snow conditions and the onset of breeding in the Mountain white-crowned Sparrow. The Condor 80:285–289

    Article  Google Scholar 

  • Morton ML, Allan N (1990) Effects of snowpack and age on reproductive schedules and testosterone levels in male white-crowned sparrows in a montane environment. In: Wada M, Ishii S, Scanes CG (eds) Endocrinology of birds: molecular to behavioral. Japan Science Society Press, Springer Verlag, Tokyo, pp 239–249

    Google Scholar 

  • Morton ML, Horstmann JL, Osborn JM (1972) Reproductive cycle and nesting success of the mountain white-crowned Sparrow (Zonotrichia leucophrys oriantha) in the central Sierra Nevada. The Condor 74(2):152–163

    Article  Google Scholar 

  • Newton I (2004) Population limitation in migrants. Ibis 146:197–226

    Article  Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166. doi:10.1007/s10336-006-0058-4

    Article  Google Scholar 

  • Norment CJ (1992) Comparative breeding biology of Harris’ sparrows and Gambel’s white-crowned sparrows in the Northwest Territories, Canada. The Condor 94:955–975

    Article  Google Scholar 

  • Norment CJ, Fuller ME (1997) Breeding-season frugivory by Harris’ sparrows (Zonotrichia querula) and white-crowned sparrows (Zonotrichia leucophrys) in a low-arctic ecosystem. Can J Zool 75:670–679

    Article  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lon B 271:59–64

    Article  Google Scholar 

  • Oakeson BB (1954) The Gambel’s sparrow at Mountain Village, Alaska. Auk 71:351–365

    Article  Google Scholar 

  • Paredes D, Trigo RM, Garcia-Herrera R, Trigo IF (2006) Understanding precipitation changes in Iberia in early spring: weather typing and storm-tracking approaches. J Hydrometeorol 7:101–113

    Article  Google Scholar 

  • Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc Lond B 363:2367–2373

    Article  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Ramenofsky M, Wingfield JC (2006) Behavioral and physiological conflicts in migrants: the transition between migration and breeding. J Ornithol 147:135–145

    Article  Google Scholar 

  • Ramenofsky M, Wingfield JC (2007) Regulation of migration. Bioscience 57:135–143

    Article  Google Scholar 

  • Schaper SV, Dawson A, Sharp PJ, Gienapp P, Caro SP, Visser ME (2012) Increasing temperature, not mean temperature, is a cue for avian timing of reproduction. Am Nat 179:E55–E69

    Article  PubMed  Google Scholar 

  • Schmidt JH, McIntyre CL, MacCluskie MC (2013) Accounting for incomplete detection: what are we estimating and how might it affect long-term passerine monitoring programs? Biol Cons 160:130–139

    Article  Google Scholar 

  • Senner NR, Verhoeven MA, Abad-Gómez JM, Gutiérrez JS, Hooijmeijer JCEW, Kentie R, Masero JA, Tibbitts TL, Piersma T (2015) When Siberia came to the Netherlands: the response of continental black-tailed godwits to a rare spring weather event. J Anim Ecol 84:1164–1176. doi:10.1111/1365-2656.12381

    Article  PubMed  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Sheriff MJ, Richter MM, Buck CL, Barnes BM (2013) Changing seasonality and phenological responses of free-living male arctic ground squirrels: the importance of sex. Philos Trans R Soc Lond B 368:20120480

    Article  Google Scholar 

  • Smith RJ, Moore FR (2003) Arrival fat and reproductive performance in a long-distance passerine migrant. Oecologia 134:325–331. doi:10.1007/s00442-002-1152-9

    Article  PubMed  Google Scholar 

  • Sokolov V, Ehrich D, Yoccoz NG, Sokolov A, Lecomte N (2012) Bird communities of the Arctic shrub tundra of Yamal: habitat specialists and generalists. PLoS One 7(12):e50335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Climate change 2007. Nature 446:727–728. doi:10.1038/446727a

    Article  Google Scholar 

  • Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res Atmospheres 107:ACL-10–ACL-13

    Article  Google Scholar 

  • Sydeman WJ, Penniman JF, Penniman TM, Pyle P, Ainley DG (1991) Breeding performance in the western gull: effects of parental age, timing of breeding and year in relation to food availability. J Anim Ecol 60:135–149

    Article  Google Scholar 

  • Tøttrup AP, Klaassen RHG, Kristensen MW et al (2012) Drought in Africa caused delayed arrival of European songbirds. Science 338:1307

    Article  PubMed  Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:988–993. doi:10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2

    Article  Google Scholar 

  • Verhulst S, Nilsson J-Åke (2008) The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos Trans R Soc B 363:399–410. doi:10.1098/rstb.2007.2146

    Article  Google Scholar 

  • Walker BG, Meddle SL, Romero LM, Landys MM, Reneerkens J, Wingfield JC (2015) Breeding on the extreme edge: modulation of the adrenocortical response to acute stress in two high arctic passerines. J Exp Zool A 323:266–275

    Article  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Weathers WW, Olson CR, Siegel RB, Davidson CL, Famula TR (1999) Winter and breeding-season energetics of nonmigratory white-crowned Sparrows. Auk 1:842–847

    Article  Google Scholar 

  • Weathers WW, Davidson CL, Olson CR, Morton ML, Nur N, Famula TR (2002) Altitudinal variation in parental energy expenditure by white-crowned sparrows. J Exp Biol 205:2915–2924

    PubMed  Google Scholar 

  • West GC, Peyton LJ, Irving L (1968) Analysis of spring migration of Lapland Longspurs to Alaska. Auk 85:639–653

    Article  Google Scholar 

  • Williamson FSL, Emison WB (1971) Variation in the timing of breeding and molt of the Lapland Longspur (Calcarius lapponicus) in Alaska, with relation to differences in latitude. Bioscience 21:701–707

    Article  Google Scholar 

  • Wingfield JC, Hunt KE (2002) Arctic spring: hormone–behavior interactions in a severe. Comp Biochem Physiol B 132:275–286

    Article  PubMed  Google Scholar 

  • Wingfield JC, Owen-Ashley N, Benowitz-Fredericks ZM et al (2004) Arctic spring: the arrival biology of migrant birds. Acta Zool Sinica 50:948–960

    CAS  Google Scholar 

  • Wingfield JC, Moore IT, Vasquez RA et al (2008) Modulation of the adrenocortical responses to acute stress in northern and southern populations of Zonotrichia. Ornitol Neotropical 19:241–251

    Google Scholar 

  • Ye H, Cho HR, Gustafson PE (1998) The changes in Russian winter snow accumulation during 1936–83 and its spatial patterns. J Clim 11:856–863

    Article  Google Scholar 

  • Zhang W, Miller PA, Smith B, Wania R, Koenigk T, Döscher R (2013) Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ Res Lett 8:034023

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ashley Asmus, Shae Bowman, Kathryn Daly, Adam Formica, Jessica Gersony, Kathleen Hunt, Michaela McGuigan, Simone Meddle, Lisa Quach, Jake Schas, and Marley Tran for field assistance. We thank Toolik Field Station (Institute of Arctic Biology, University of Alaska Fairbanks) for sharing data on meteorological conditions, and dates birds were first observed on breeding grounds. We thank both Toolik Field Station and CH2 M HILL for providing support and logistics. This project has been funded by a collaborative NSF Grant from the Office of Polar Programs (ARC 0908444 to N. Boelman, ARC 0908602 to L. Gough, and ARC 0909133 to J. Wingfield).

Author information

Authors and Affiliations

Authors

Contributions

NTB, LG, and JCW conceived and designed the study. All authors collected measurements and analyzed the data. NTB, JSK, and SKS did the majority of the writing, while HEC, JHP, LG, and JCW provided editorial advice.

Corresponding author

Correspondence to Natalie T. Boelman.

Additional information

Communicated by Hannu J. Ylonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boelman, N.T., Krause, J.S., Sweet, S.K. et al. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds. Oecologia 185, 69–80 (2017). https://doi.org/10.1007/s00442-017-3907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3907-3

Keywords

Navigation