Skip to main content
Log in

What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Biodiversity is known to increase ecosystem functioning. However, species vary in their contributions to ecosystem processes. Here, we investigated seven ecosystem functions based on the consumption of different resources in tropical ant communities. We analysed how different species influence site-level resource consumption, and determined how each species influenced performance and stability of these functions. Based on simulated extinctions, we identified ‘key species’ with significant functional contributions. We then investigated which traits, such as biomass, abundance, and specialisation, characterized them, and compared trait distributions across four sites to analyse differences in functional redundancy. Only few species significantly influenced ecosystem functions. Common generalist species tended to be the most important drivers of many ecosystem functions, though several specialist species also proved to be important in this study. Moreover, species-specific ecological impacts varied across sites. In addition, we found that functional redundancy varied across sites, and was highest in sites where the most common species did not simultaneously have the greatest functional impacts. Furthermore, redundancy was enhanced in sites where species were less specialised and had more even incidence distributions. Our study demonstrates that the ecological importance of a species depends on its functional traits, but also on the community context. It cannot be assessed without investigating its species-specific performance across multiple functions. Hence, to assess functional redundancy in a habitat and the potential for compensation of species loss, researchers need to study species-specific traits that concern functional performance as well as population dynamics and tolerance to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen A, Brown J, Gillooly J (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548. doi:10.1126/science.1072380

    Article  CAS  PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x

    Article  PubMed  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. doi:10.1046/j.1461-0248.2003.00432.x

    Article  Google Scholar 

  • Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199. doi:10.1016/S0929-1393(98)00120-6

    Article  Google Scholar 

  • Berg MP, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629

    Article  Google Scholar 

  • Blüthgen N, Feldhaar H (2010) Food and shelter: how resources influence ant ecology. In: Lach L, Parr CL, Abbott KL (eds) ant ecology. Oxford University Press, Oxford, pp 115–136

    Google Scholar 

  • Blüthgen N, Klein A-M (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291. doi:10.1016/j.baae.2010.11.001

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006a) Measuring specialization in species interaction networks. BMC Ecol 67:9

    Article  Google Scholar 

  • Blüthgen N, Mezger D, Linsenmair KE (2006b) Ant-hemipteran trophobioses in a Bornean rainforest—diversity, specificity and monopolisation. Insectes Soc 53:194–203

    Article  Google Scholar 

  • Byrnes JEK, Gamfeldt L, Isbell F et al (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124. doi:10.1111/2041-210X.12143

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature05202

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Walker BH, Hobbs RJ et al (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Collins SL, Glenn SM, Briggs JM (2002) Effect of local and regional processes on plant species richness in tallgrass prairie. Oikos 99:571–579

    Article  Google Scholar 

  • Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323

    Article  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687. doi:10.1046/j.1461-0248.2003.00494.x

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nystrom M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Fayle TM, Eggleton P, Manica A et al (2015) Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecol Lett 18:254–262. doi:10.1111/ele.12403

    Article  PubMed  PubMed Central  Google Scholar 

  • Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14. doi:10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Article  Google Scholar 

  • Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 23:14–19. doi:10.1016/j.tree.2007.11.001

    Article  PubMed  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882. doi:10.1046/j.1365-2486.2001.00448.x

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85:648–657

    Article  Google Scholar 

  • Gibb H, Johansson T (2011) Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J Anim Ecol 80:548–557. doi:10.1111/j.1365-2656.2010.01794.x

    Article  PubMed  Google Scholar 

  • Gibb H, Parr CL (2010) How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164:1061–1073. doi:10.1007/s00442-010-1703-4

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190. doi:10.1038/nature05947

    Article  CAS  PubMed  Google Scholar 

  • Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328. doi:10.1007/s10021-009-9291-z

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houadria MYI, Salaz-Lopez A, Orivel J et al (2015) Dietary and temporal niche differentiation in tropical ants—can they explain local ant coexistence? Biotropica 47:208–217

    Article  Google Scholar 

  • Houadria M, Blüthgen N, Salas-Lopez A et al (2016) The relation between circadian asynchrony, functional redundancy and trophic performance in tropical ant communities. Ecology 97:225–235. doi:10.1890/14-2466.1

    PubMed  Google Scholar 

  • Isbell F, Calcagno V, Hector A et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi:10.1038/nature10282

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SR, Coleman RA, Della Santina P et al (2005) Regional scale differences in the determinism of grazing effects in the rocky intertidal. Mar Ecol Prog Ser 287:77–86. doi:10.3354/meps287077

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J Anim Ecol 75:1370–1378. doi:10.1111/j.1365-2656.2006.01161.x

    Article  PubMed  Google Scholar 

  • Laliberte E, Wells JA, DeClerck F et al (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86. doi:10.1111/j.1461-0248.2009.01403.x

    Article  PubMed  Google Scholar 

  • Lehman CL, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156:534–552. doi:10.1086/303402

    Article  Google Scholar 

  • Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  • Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function—invasion resistance. Ecol Lett 4:358–365. doi:10.1046/j.1461-0248.2001.00235.x

    Article  Google Scholar 

  • Mason N, Mouillot D, Lee W, Wilson J (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81. doi:10.1111/j.1365-2656.2009.01628.x

    Article  CAS  PubMed  Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514. doi:10.1111/j.2006.0030-1299.14143.x

    Article  Google Scholar 

  • Ness J, Mooney K, Lach L (2010) Ants as mutualists. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 97–114

    Google Scholar 

  • Ohkawara K, Nakamura K, Kadokura N, Terashita T (2016) Geographical variation in mandible morphologies specialised for collembolan predation depend on prey size in the ant Strumigenys lewisi. Ecol Entomol. doi:10.1111/een.12374.10.1111/een.12374

    Google Scholar 

  • Orivel J, Leroy C (2010) The diversity and ecology of ant gardens (Hymenoptera: formicidae; Spermatophyta: Angiospermae). Myrmecological News 14:73–85

    Google Scholar 

  • Philpott SM, Soong O, Lowenstein JH et al (2009) Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol Appl 19:1858–1867

    Article  PubMed  Google Scholar 

  • Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Rosenfeld J (2002a) Logical fallacies in the assessment of functional redundancy. Conserv Biol 16:837–839

    Article  Google Scholar 

  • Rosenfeld J (2002b) Functional redundancy in ecology and conservation. Oikos 98:156–162

    Article  Google Scholar 

  • Sanders NJ, Gordon DM (2003) Resource-dependent interactions and the organization of desert ant communities. Ecology 84:1024–1031

    Article  Google Scholar 

  • Sasaki T, Lauenroth WK (2011) Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166:761–768

    Article  PubMed  Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  • Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517

    Article  Google Scholar 

  • Smith MD, Wilcox JC, Kelly T, Knapp AK (2004) Dominance not richness determines invasibility of tallgrass prairie. Oikos 106:253–262. doi:10.1111/j.0030-1299.2004.13057.x

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Tobin JE (1995) Ecology and diversity of tropical forest canopy ants. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, London, pp 129–147

    Google Scholar 

  • Traniello JFA (1989) Foraging strategies of ants. Annu Rev Entomol 34:191–210. doi:10.1146/annurev.ento.34.1.191

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Wang Y, Wu H (2015) Stability of plant-pollinator-ant co-mutualism. Appl Math Comput 261:231–241. doi:10.1016/j.amc.2015.03.061

    Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to EcoFOG and CNRS, particularly Philippe Gaucher and Patrick Châtelet, for facilitating sampling in Les Nouragues, and Jérôme Châve for research permission and logistical help. In Malaysia, we thank SaBC, DVMC and SEARPP for research permission in Danum and Malua, and Glen Reynolds (DVFC) and Arthur Y.C. Chung (FRC, Sandakan) for their great support. Further thanks go to Jack Longino and Bonnie Blaimer for their help in ant identification, and Jérôme Orivel and two anonymous referees for highly valuable input. Finally, we thank Mona-Isabel Schmitt, Johanna Arndt, Eric Schneider and Alex Salas-Lopez for help in the field, Evelien Jongepier for statistical advice, and Heike Stype for logistical support. This research was funded by the Grant ME 3842/1-1 of the Deutsche Forschungsgemeinschaft (DFG) to Florian Menzel.

Author information

Authors and Affiliations

Authors

Contributions

FM and MH conceived of the study and designed the analyses; MH conducted the field work, the species identification and the data processing; FM and MH developed and performed the statistical analysis and wrote the manuscript.

Corresponding author

Correspondence to Florian Menzel.

Additional information

Communicated by Roland A. Brandl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 755 kb)

Supplementary material 2 (XLS 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houadria, M., Menzel, F. What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages. Oecologia 184, 885–899 (2017). https://doi.org/10.1007/s00442-017-3900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3900-x

Keywords

Navigation