Skip to main content
Log in

The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant’s extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alma AM, Pol RG, Pacheco LF, Vázquez DP (2015) No defensive role of ants throughout a broad latitudinal and elevational range of a cactus. Biotropica 47:347–354. doi:10.1111/btp.12211

    Article  Google Scholar 

  • Aslan CE, Zavaleta ES, Croll D, Tershy B (2012) Effects of native and non-native vertebrate mutualists on plants. Conserv Biol 26:778–789. doi:10.1111/j.1523-1739.2012.01885.x

    Article  PubMed  Google Scholar 

  • Bowers JE (1997) Demographic patterns of Ferocactus cylindraceus in relation to substrate age and grazing history. Plant Ecol 133:37–48. doi:10.1023/A:1009767621391

    Article  Google Scholar 

  • Bowers J (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank? J Arid Environ 45:197–205. doi:10.1006/jare.2000.0642

    Article  Google Scholar 

  • Bowers J, Pierson E (2001) Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae). Southwest Nat 46:272–281. doi:10.2307/3672423

    Article  Google Scholar 

  • Brodie JF, Helmy OE, Brockelman WY, Maron JL (2009) Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree. Ecol Appl 19:854–863. doi:10.1890/08-0955.1

    Article  PubMed  Google Scholar 

  • Bronstein JL (2001) The costs of mutualism. Am Zool 41:825–839. doi:10.1668/0003-1569(2001)041[0825:TCOM]2.0.CO;2

  • Bruna EM (2003) Are plant populations in fragmented habitats recruitment limited? Tests with an Amazonian herb. Ecology 84:932–947. doi:10.1890/0012-658(2003)084[0932:APPIFH]2.0.CO;2

  • Bruna EM, Izzo TJ, Inouye BD, Vasconcelos HL (2014) Effect of mutualist partner identity on plant demography. Ecology 95:3237–3243. doi:10.1890/14-0481.1

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Cayan DR, Tyree M, Kunkel KE, Castro C, Gershunov A, Barsugli J, Ray AJ, Overpeck J, Anderson M, Russell J, Rajagopalan B, Rangwala I, Duffy P (2013) Future climate: projected average. In: Garfin G, Jardine A, Merideth R, Black M, LeRoy S (eds) Assessment of climate change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, DC, pp 101–125

    Chapter  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–2392. doi:10.1890/08-1490.1

    Article  PubMed  Google Scholar 

  • Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890. doi:10.1111/ele.12279

    Article  PubMed  Google Scholar 

  • Coulson T (2012) Integral projections models, their construction and use in posing hypotheses in ecology. Oikos 121:1337–1350. doi:10.1111/j.1600-0706.2012.00035.x

    Article  Google Scholar 

  • Drezner T (2004) Saguaro recruitment over their American range: a separation and comparison of summer temperature and rainfall. J Arid Environ 56:509–524. doi:10.1016/S014-1963(03)00064-8

    Article  Google Scholar 

  • Drezner T, Balling R (2002) Climatic controls of saguaro (Carnegiea gigantea) regeneration: a potential link with El Niño. Phys Geogr 23:465–475. doi:10.2747/0272-3646.23.6.465

    Article  Google Scholar 

  • Easterling M, Ellner S, Dixon P (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708. doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2

  • Ehrlén J (2002) Assessing the lifetime consequences of plant-animal interactions for the perennial herb Lathyrus vernus (Fabaceae). Perspect Plant Ecol Evol Syst 5:145–163. doi:10.1078/1433-8319-00031

    Article  Google Scholar 

  • Ellner S, Rees M (2006) Integral projection models for species with complex demography. Am Nat 167:410–428. doi:10.1086/499438

    Article  PubMed  Google Scholar 

  • Feldman TS, Morris WF (2011) Higher survival at low density counteracts lower fecundity to obviate Allee effects in a perennial plant. J Ecol 99:1162–1170. doi:10.1111/j.1365-2745.2011.01855.x

    Article  Google Scholar 

  • Fitzpatrick G, Davidowitz G, Bronstein JL (2013) An herbivore’s thermal tolerance is higher than that of the ant defenders in a desert protection mutualism. Sociobiology 60:252–258. doi:10.13102/sociobiology.v60i3.252-258

    Article  Google Scholar 

  • Geib JC, Galen C (2012) Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations. Ecology 93:1581–1592. doi:10.1890/11-1271.1

    Article  PubMed  Google Scholar 

  • Godinez-Alvarez H, Valiente-Banuet A, Rojas-Martinez A (2002) The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83:2617–2629. doi:10.2307/3071819

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407. doi:10.1111/j.1461-0248.2009.01430.x

    Article  PubMed  Google Scholar 

  • Holland JN, Molina-Freaner F (2013) Hierarchical effects of rainfall, nurse plants, granivory and seed banks on cactus recruitment. J Veg Sci 24:1053–1061. doi:10.1111/jvs.12021

    Article  Google Scholar 

  • Jordan PW, Nobel PS (1981) Seedling establishment of Ferocactus acanthodes in relation to drought. Ecology 62:901–906. doi:10.2307/1936987

    Article  Google Scholar 

  • Jordan PW, Nobel PS (1982) Height distributions of two species of cacti in relation to rainfall, seedling establishment, and growth. Bot Gaz 143:511–517

    Article  Google Scholar 

  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042. doi:10.1890/07-0823.1

    Article  PubMed  Google Scholar 

  • Lanan MC, Bronstein JL (2013) An ant’s-eye view of an ant-plant protection mutualism. Oecologia 172:779–790. doi:10.1007/s00442-012-2528-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mann J (1969) Cactus-feeding insects and mites. In: United States National Museum Bulletin, vol 256. Smithsonian Institution, Washington

  • Marazzi B, Bronstein JL, Koptur S (2013) The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Ann Bot 111:1243–1250. doi:10.1093/aob/mct109

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer VE, Frederickson ME, McKey D, Blatrix R (2014) Current issues in the evolutionary ecology of ant-plant symbioses. New Phytol 202:749–764. doi:10.1111/nph.12690

    Article  PubMed  Google Scholar 

  • Merow C, Dahlgren JP, Metcalf CJE, Childs DZ, Evans MEK, Jongejans E, Record S, Rees M, Salguero-Gomez R, McMahon SM (2014) Advancing population ecology with integral projection models: a practical guide. Methods Ecol Evol 5:99–110. doi:10.1111/2041-210X.12146

    Article  Google Scholar 

  • Miller TEX, Louda SM, Rose KA, Eckberg JO (2009) Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol Monogr 79:155–172. doi:10.1890/07-1550.1

    Article  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer, Sunderland

    Google Scholar 

  • Morris WF, Wilson WG, Bronstein JL, Ness JH (2005) Environmental forcing and the competitive dynamics of a guild of cactus-tending ant mutualists. Ecology 86:3190–3199. doi:10.1890/05-0465

    Article  Google Scholar 

  • Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS, Maron JL, Mitchell CE, Parker IM, Power AG, Torchin ME, Vazquez DP (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029. doi:10.1890/06-0442

    Article  PubMed  Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514. doi:10.1111/j.2006.0030-1299.14143.x

    Article  Google Scholar 

  • Ness JH, Morris WF, Bronstein JL (2006) Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology 87:912–921. doi:10.1890/0012-9658(2006)87[912:IQAQOM]2.0.CO;2

  • Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM (2010) Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc Natl Acad Sci USA 107:17234–17239. doi:10.1073/pnas.1006872107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470. doi:10.1890/0012-9658(1997)078[1457:PLOCSS]2.0.CO;2

  • Pierson EA, Turner RM, Betancourt JL (2013) Regional demographic trends from long-term studies of saguaro (Carnegiea gigantea) across the northern Sonoran Desert. J Arid Environ 88:57–69. doi:10.1016/j.jaridenv.2012.08.008

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rodriguez-Perez J, Traveset A (2012) Demographic consequences for a threatened plant after the loss of its only disperser. Habitat suitability buffers limited seed dispersal. Oikos 121:835–847. doi:10.1111/j.1600-0706.2011.19946.x

    Article  Google Scholar 

  • Rosumek FB, Silveira FAO, Neves FdS, Barbosa NPdU, Diniz L, Oki Y, Pezzini F, Fernandes GW, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549. doi:10.1007/s00442-009-1309-x

    Article  PubMed  Google Scholar 

  • Rudgers JA, Strauss SY (2004) A selection mosaic in the facultative mutualism between ants and wild cotton. Proc R Soc B Biol Sci 271:2481–2488. doi:10.1098/rspb.2004.2900

    Article  Google Scholar 

  • Rudgers JA, Miller TEX, Ziegler SM, Craven KD (2012) There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93:565–574. doi:10.1890/11-0689.1

    Article  PubMed  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592. doi:10.1016/j.tree.2006.06.018

    Article  PubMed  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113. doi:10.1007/s13225-010-0023-7

    Article  Google Scholar 

  • Shreve F (1929) Changes in desert vegetation. Ecology 10:364–373. doi:10.2307/1931144

    Article  Google Scholar 

  • Silvertown J, Franco M (1993) Plant demography and habitat: a comparative approach. Plant Species Biol 8:67–73. doi:10.1111/j.1442-1984.1993.tb00058.x

    Article  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246. doi:10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2

  • Stanton ML, Palmer TM (2011) The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology 92:1073–1082. doi:10.1890/10-1239.1

    Article  PubMed  Google Scholar 

  • Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal MA, McKeon CS, Osenberg CW, Bolker BM (2010) Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS One 5:e14308. doi:10.1371/journal.pone.0014308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner RM (1990) Long-term vegetation change at a fully protected Sonoran Desert site. Ecology 71:466–477. doi:10.2307/1940301

    Google Scholar 

  • Weber MG, Keeler KH (2013) The phylogenetic distribution of extrafloral nectaries in plants. Ann Bot 111:1251–1261. doi:10.1093/aob/mcs225

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Zhang Y, Ma K (2012) The ecological effects of the ant-hemipteran mutualism: a meta-analysis. Basic Appl Ecol 13:116–124. doi:10.1016/j.baae.2012.02.002

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Bressmer, C. Gibson, M. Lanan, H. McNelis, A. Reed and L. Sturdivant for assistance in the field. We also thank G. Davidowitz and M. Lanan for their insight into the insect community that interacts with F. wislizeni. Thank you to the reviewers and editors for helpful suggestions. This work was supported by a National Science Foundation Graduate Research Fellowship (DGE-0718124) and a grant from the Seattle chapter of the ARCS Foundation to K. R. F., and by National Science Foundation grant DEB-0716433 to W. F. M.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Ford.

Additional information

Communicated by Candace Galen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ford, K.R., Ness, J.H., Bronstein, J.L. et al. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth. Oecologia 179, 435–446 (2015). https://doi.org/10.1007/s00442-015-3341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3341-3

Keywords

Navigation