We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nutrient supply and herbivores can regulate plant species composition, biodiversity and functioning of terrestrial ecosystems. Nutrient enrichment frequently increases plant productivity and decreases diversity while herbivores tend to maintain plant diversity in productive systems. However, the mechanisms by which nutrient enrichment and herbivores regulate plant diversity remain unclear. Abundance-based mechanisms propose that fertilization leads to the extinction of rare species due to random loss of individuals of all species. In contrast, functional-based mechanisms propose that species exclusion is based on functional traits which are disadvantageous under fertilized conditions. We tested mechanistic links between fertilization and diversity loss in the presence or absence of consumers using data from a 4-year fertilization and fencing experiment in an alpine meadow. We found that both abundance- and functional-based mechanisms simultaneously affected species loss in the absence of herbivores while only abundance-based mechanisms affected species loss in the presence of herbivores. Our results indicate that an abundance-based mechanism may consistently play a role in the loss of plant diversity with fertilization, and that diversity decline is driven primarily by the loss of rare species regardless of a plant’s functional traits and whether or not herbivores are present. Increasing efforts to conserve rare species in the context of ecosystem eutrophication is a central challenge for grazed grassland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarssen LW, Schamp BS, Pither J (2006) Why are there so many small plants? Implications for species coexistence. J Ecol 94:569–580

    Article  Google Scholar 

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306

    Article  PubMed  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate ANOVA. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson CR, Brzezinski MA, Washburn L, Kudela R (2006) Circulation and environmental conditions during a toxigenic Pseudo-nitzschia australis bloom in the Santa Barbara Channel, California. Mar Ecol Prog Ser 327:119–133

    Article  CAS  Google Scholar 

  • Bakker ES, Olff H (2003) Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. J Veg Sci 14:465–474

    Article  Google Scholar 

  • Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JMH (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–789

    Article  PubMed  Google Scholar 

  • Borer ET, Seabloom EW, Gruner DS, Harpole WS (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520

    Article  CAS  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48(5):1079–1087

    Article  Google Scholar 

  • Cohen JS, Rainford ESKD, Blossey EB (2014) Community weighted mean functional effect traits determine larval amphibian responses to litter mixtures. Oecologia 174:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Craine J (2009) Resource strategies of wild plants. Princeton University, Princeton

    Book  Google Scholar 

  • Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Dickson TL, Foster BL (2011) Fertilization decreases plant biodiversity even when light is not limiting. Ecol Lett 14:380–388

    Article  PubMed  Google Scholar 

  • Dybzinski R, Tilman D (2007) Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am Nat 170:305–318

    Article  PubMed  Google Scholar 

  • Eskelinen A, Harrison S, Tuomi M (2012) Plant traits mediate consumer and nutrient control on plant community productivity and diversity. Ecology 93:2705–2718

    Article  PubMed  Google Scholar 

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway JN, Towsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gao YH, Luo P, Wu N, Chen H, Wang GX (2007) Grazing intensity impacts on carbon sequestration in an alpine meadow on the eastern Tibetan Plateau. Res J Agric Biol Sci 3(6):642–647

    CAS  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C et al (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Glenn SM, Collins SL (1992) Effects of spatial scale and disturbance on rates of immigration and extinction of species in prairies. Oikos 63:273–280

    Article  Google Scholar 

  • Goldberg DE, Miller TE (1990) Effects of different resource additions of species diversity in an annual plant community. Ecology 71:213–225

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348

    Article  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  CAS  PubMed  Google Scholar 

  • Hautier Y, Seabloom EW, Borer ET, Adler PB et al (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–525

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Gruner DS, Borer ET et al (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holt RD, Grover J, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Isbell F, Tilman D, Polasky S et al (2013) Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:454–460

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2006) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lan Z, Bai Y (2012) Testing mechanisms of N-enrichment induced species loss in a semiarid inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. Philos Trans R Soc Lond Ser B-Biol Sci 367:3125–3134

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Qin G, Du G (2006) Importance of assemblage-level thinning: a field experiment in an alpine meadow on the Tibet Plateau. J Veg Sci 17:417–424

    Article  Google Scholar 

  • McQuarrie ADR, Tsai CL (1998) Regression and time series model selection. World Scientific, Singapore

    Book  Google Scholar 

  • Niu K, Luo Y, Choler P, Du G (2008) The role of biomass allocation strategy in diversity loss due to fertilization. Basic Appl Ecol 9:485–493

    Article  Google Scholar 

  • Oksanen J (1996) Is the humped relationship between species richness and biomass an artefact due to plot size? J Ecol 84:293–295

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17–7

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265

    Article  CAS  PubMed  Google Scholar 

  • Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905

    Article  Google Scholar 

  • Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79:2581–2592

    Article  Google Scholar 

  • Püttker T, Bueno AA, Prado PI, Pardini R (2014) Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124:206–215

    Article  Google Scholar 

  • Quétier F, Thébault A, Lavorel S (2007) Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecol Monogr 77:33–52

    Article  Google Scholar 

  • Rajaniemi TK (2002) Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J Ecol 90:316–324

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814

    Article  CAS  PubMed  Google Scholar 

  • Shipley B, Laughlin DC, Sonnier G, Otfinowski R (2011) A strong test of a maximum entropy model of trait-based community assembly. Ecology 92:507–517

    Article  PubMed  Google Scholar 

  • Stevens MHH, Carson WP (1999) Plant density determines species richness along an experimental fertility gradient. Ecology 80:455–465

    Article  Google Scholar 

  • Stevens MHH, Bunker DE, Schnitzer SA, Carson WP (2004) Establishment limitation reduces species recruitment and species richness as soil resources rise. J Ecol 92:339–347

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE et al (2005) Functional and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University, Princeton

    Google Scholar 

  • Tilman D (1993) Species richness of experimental productivity gradients- how important is colonization limitation. Ecology 74:2179–2191

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. The Robert H. MacArthur award lecture. Ecology 80:1455–1474

    Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago, Chicago, pp 13–25

    Google Scholar 

  • Viola DV, Mordecai EA, Jaramillo AG, Sistla SA et al (2010) Competition-defense tradeoffs and the maintenance of plant diversity. Proc Natl Acad Sci USA 107:17217–17222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C et al (2002) Toward an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • WallisdeVries MF, Bakker JP, van Wieren SE (1998) Grazing and conservation management. Conservation biology series. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–851

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, van Ruijven J, Du GZ (2011) The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant Soil 345:315–324

    Article  CAS  Google Scholar 

  • Yang ZL, Guo H, Zhang JY, Du GZ (2013) Stochastic and deterministic processes together determine alpine meadow plant community composition on the Tibetan Plateau. Oecologia 171(2):495–504

    Article  PubMed  Google Scholar 

  • Young HS, McCauley DJ, Helgen KM, Goheen JR et al (2013) Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna. J Ecol 101(4):1030–1041

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to T. K. Rajaniemi for valuable discussion and comments. This project was supported by the Key Program of the National Natural Science Foundation of China (grant no. 41430749), the National Natural Science Foundation of China (grant no. 31300363), and the Postdoctoral Foundation of China (grant nos. 2013M541970, 2014T70675). The experiments comply with the current laws of China, where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Du.

Additional information

Communicated by Bryan Foster.

Z. Yang and Y. Hautier contributed to this paper equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hautier, Y., Borer, E.T. et al. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia 179, 261–270 (2015). https://doi.org/10.1007/s00442-015-3313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3313-7

Keywords

Navigation