Skip to main content
Log in

Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Viviparous Phrynocephalus lizards (Agamidae) are mainly restricted to the Qinghai-Tibet Plateau of China. In this study, we used Phrynocephalus vlangalii females kept under seven thermal regimes for the whole gestation period to test the hypothesis that viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. All females at 24 °C and 93 % of the females at 28 °C failed to give birth or produced stillborns, and proportionally fewer females gave birth at 29 or 35 °C than at 32 °C. Though the daily temperatures encountered were unsuitable for embryonic development, 95 % of the females in nature and 89 % of the females thermoregulating in the laboratory gave birth. There was no shift in the thermal preferences of females when they were pregnant. Although thermal conditions inside natural burrows were unsuitable for embryonic development, mass and sprint speed were both greater in neonates produced in nature. Our data show that (1) long-term exposure of P. vlangalii embryos to temperatures outside the range of 29–35 °C may result in the failure of development, but daily or short-term exposure may not necessarily increase embryonic mortality; (2) low gestation temperatures slow but do not arrest embryonic development, and females produce high-quality offspring in the shortest possible time by maintaining gestation temperatures close to the upper thermal limit for embryonic development; and (3) viviparity is currently adaptive at high elevations because embryos in nature cannot fully develop without relying on maternal thermoregulation. Our data validate the hypothesis tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews RM, Mathies T (2000) Natural history of reptilian development: constraints on the evolution of viviparity. Bioscience 50:227–238

    Article  Google Scholar 

  • Angilletta M (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  • Barabanov AV, Ananjeva NB (2007) Catalogue of the available scientific species group names for lizards of the genus Phrynocephalus Kaup, 1825 (Reptilia, Sauria, Agamidae). Zootaxa 1399:1–57

    Google Scholar 

  • Blackburn DG (2000) Reptilian viviparity: past research, future directions, and appropriate models. Comp Biochem Physiol A 127:391–409

    Article  CAS  Google Scholar 

  • Bleu J, Massot M, Haussy C, Meylan S (2012) Experimental litter size reduction reveals costs of gestation and delayed effects on offspring in a viviparous lizard. Proc R Soc B 279:489–498

    Article  PubMed  Google Scholar 

  • Bodie JR, Smith KR, Burke VJ (1996) A comparison of diel nest temperature and nest site selection for two sympatric species of freshwater turtles. Am Midl Nat 136:181–186

    Article  Google Scholar 

  • Booth DT (2006) Influence of incubation temperature on hatchling phenotype in reptiles. Physiol Biochem Zool 79:274–281

    Article  PubMed  Google Scholar 

  • Calderón-Espinosa ML, Andrews RM, Mendéz-de-la-Cruz FR (2006) Evolution of egg retention in lizards of the Sceloporus spinosus group: exploring the role of physiological, environmental, and phylogenetic factors. Herpetol Monogr 20:147–158

    Article  Google Scholar 

  • Calsbeek R, Sinervo B (2007) Correlational selection on lay date and life-history traits: experimental manipulations of territory and nest site quality. Evolution 61:1071–1083

    Article  PubMed  Google Scholar 

  • Congdon JD, Nagle RD, Dunham AE, Beck CW, Kinney OM, Yeomans SR (1999) The relationship of body size to longevity of hatchling snapping turtles (Chelydra serpentina): an evaluation of the ‘bigger is better’ hypothesis. Oecologia 127:224–235

    Article  Google Scholar 

  • Deeming DC (2004) Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, Nottingham

    Google Scholar 

  • Demuth JP (2001) The effects of constant and fluctuating incubation temperatures on sex determination, growth, and performance in the tortoise Gopherus polyhemus. Can J Zool 79:1069–1620

    Article  Google Scholar 

  • Dibattista JD, Feldheim KA, Gruber SH, Hendry AP (2007) When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks. J Evol Biol 20:201–272

    Article  CAS  PubMed  Google Scholar 

  • Du WG, Wang L, Shen JW (2010) Optimal temperatures for egg incubation in two Geoemydid turtles: Ocadia sinensis and Mauremys mutica. Aquculture 305:138–142

    Article  Google Scholar 

  • Du WG, Zhao B, Chen Y, Shine R (2011) Behavioral thermoregulation by turtle embryos. Proc Natl Acad Sci USA 108:9513–9515

    Article  CAS  PubMed  Google Scholar 

  • Dufaure JP, Hubert J (1961) Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Arch Anat Micr Morph Exp 50:309–328

    Google Scholar 

  • Ferguson GW, Fox SF (1984) Annual variation of survival advantage of large juvenile side-blotched lizards, Uta stansburiana: its causes and evolutionary significance. Evolution 38:342–349

    Article  Google Scholar 

  • Gao JF, Qu YF, Luo LG, Ji X (2010) Evolution of reptilian viviparity: a test of the maternal manipulation hypothesis in a temperate snake, Gloydius brevicaudus (Viperidae). Zool Sci 27:248–255

    Article  PubMed  Google Scholar 

  • Gozdzik A, Fu JZ (2009) Are toad-headed lizards Phrynocephalus przewalskii and P. frontalis (Family Agamidae) the same species? Defining species boundaries with morphological and molecular data. Russ J Herpetol 16:107–118

    Google Scholar 

  • Guo XG, Wang YZ (2007) Partitioned Bayesian analyses, dispersal–vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. Mol Phylogen Evol 45:643–662

    Article  CAS  Google Scholar 

  • Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002) Late Miocene–Pliocene development of Asian aridification as recorded in the red-earth formation in northern China. Nature 416:159–163

    Article  CAS  PubMed  Google Scholar 

  • Husak JF (2006) Does speed help you survive? A test with collared lizards of different ages. Funct Ecol 20:179–774

    Google Scholar 

  • Janzen FJ, Tucker JK, Paukstis GL (2000a) Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles. J Evol Biol 13:947–954

    Article  Google Scholar 

  • Janzen FJ, Tucker JK, Paukstis GL (2000b) Experimental analysis of an early life-history stage: selection on size of hatchling turtles. Ecology 81:2275–2280

    Article  Google Scholar 

  • Ji X, Chen F, Du WG, Chen HL (2003) Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). J Zool 261:409–416

    Article  Google Scholar 

  • Ji X, Lin LH, Luo LG, Lu HL, Gao JF, Han J (2006) Gestation temperature affects sexual phenotype, morphology, locomotor performance and growth of neonatal brown forest skink, Sphenomorphus indicus. Biol J Linn Soc 88:453–463

    Article  Google Scholar 

  • Ji X, Lin CX, Lin LH, Qiu QB, Du Y (2007) Evolution of viviparity in warm-climate lizards: an experimental test of the maternal manipulation hypothesis. J Evol Biol 20:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Du WG, Qu YF, Lin LH (2009a) Nonlinear continuum of egg size-number trade-offs in a snake: is egg-size variation fitness related? Oecologia 159:689–696

    Article  PubMed  Google Scholar 

  • Ji X, Wang YZ, Wang Z (2009b) New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa 1988:61–68

    Google Scholar 

  • Johnston IA, Vieira VLA, Hill J (1996) Temperature and ontogeny in ectotherms: muscle phenotype in fish. In: Johnston IA, Bennett AF (eds) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 153–181

    Chapter  Google Scholar 

  • Li H, Qu YF, Hu RB, Ji X (2009) Evolution of viviparity in cold-climate lizards: testing the maternal manipulation hypothesis. Evol Ecol 23:777–790

    Article  Google Scholar 

  • Li H, Qu YF, Ding GH, Ji X (2011) Life-history variation with respect to the experienced thermal environments in a lizard, Eremias multiocellata (Lacertidae). Zool Sci 28:332–338

    Article  PubMed  Google Scholar 

  • Li H, Wang Z, Chen C, Ji X (2012) Does the variance of incubation temperatures always constitute a selective force for the origin of reptilian viviparity? Curr Zool 58:812–819

    Google Scholar 

  • Li H, Ding GH, Zhou ZS, Ji X (2013) Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizard Lacerta agilis (Lacertidae). Acta Zool 94:11–18

    Article  Google Scholar 

  • Lin CX, Du Y, Qiu QB, Ji X (2007) Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin 53:437–445

    Google Scholar 

  • Lin CX, Zhang L, Ji X (2008) Influence of pregnancy on locomotor performances of the skink, Mabuya multifasciata: why do females shift thermal preferences when pregnant? Zoology 111:188–195

    Article  PubMed  Google Scholar 

  • Lin LH, Ma XM, Li H, Ji X (2010) Phenotypic variation in hatchling Chinese ratsnakes (Zaocys dhumnades) from eggs incubated at constant temperatures. J Therm Biol 35:28–33

    Article  Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348

    Article  PubMed  Google Scholar 

  • Lorioux S, DeNardo DF, Gorelick R, Lourdais O (2012) Maternal influences on early development: preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia childreni. J Exp Biol 215:1346–1353

    Article  PubMed  Google Scholar 

  • Löwenborg K, Shine R, Kärvemo S, Hagman M (2010) Grass snakes exploit anthropogenic heat sources to overcome distributional limits imposed by oviparity. Funct Ecol 24:1095–1102

    Article  Google Scholar 

  • Löwenborg K, Gotthard K, Hagman M (2012) How a thermal dichotomy in nesting environments influences offspring of the world’s most northerly oviparous snake, Natrix natrix (Colubridae). Biol J Linn Soc 107:833–844

    Article  Google Scholar 

  • Lynch VJ (2009) Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution 63:2457–2465

    Article  PubMed  Google Scholar 

  • Monasterio C, Shoo LP, Salvador A, Siliceo I, Díaz JA (2011) Thermal constraints on embryonic development as a proximate cause for elevational range limits in two Mediterranean lacertid lizards. Ecography 34:1030–1039

    Article  Google Scholar 

  • Noble D, Qi Y, Fu JZ (2010) Species delineation using Bayesian model-based assignment tests: a case study using Chinese toad-headed agamas (genus Phrynocephalus). BMC Evol Biol 10:197

    Article  PubMed Central  PubMed  Google Scholar 

  • Qu YF, Li H, Gao JF, Ji X (2011) Embryonic thermo-sensitivity and hatchling morphology differ between two coexisting lizards. Acta Oecol 37:375–380

    Article  Google Scholar 

  • Rodríguez-Díaz T, González F, Ji X, Braña F (2010) Effects of incubation temperature on hatchling phenotypes in an oviparous lizard with prolonged egg retention: are the two main hypotheses on the evolution of viviparity compatible? Zoology 113:33–38

    Article  PubMed  Google Scholar 

  • Shine R (1983) Reptilian reproductive modes: the oviparity–viviparity continuum. Herpetologica 39:1–8

    Google Scholar 

  • Shine R (1995) A new hypothesis for the evolution of viviparity in reptiles. Am Nat 145:809–823

    Article  Google Scholar 

  • Shine R (2005) Life-history evolution in reptiles. Annu Rev Ecol Evol Syst 36:23–46

    Article  Google Scholar 

  • Shu L, Zhang QL, Qu YF, Ji X (2010) Thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in the Qinghai toad-headed lizard Phrynocephalus vlangali. Acta Ecol Sin 30:2036–2042

    Google Scholar 

  • Tang XL, Yue F, Yan XF, Zhang DJ, Xin Y, Wang C, Chen Q (2012) Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol 37:438–444

    Article  Google Scholar 

  • Telemeco RS, Radder RS, Baird TA, Shine R (2010) Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc 100:642–655

    Article  Google Scholar 

  • Tinkle DW, Gibbons JW (1977) The distribution and evolution of viviparity in reptiles. Misc Publ Univ Mich Mus Zool 154:1–55

    Google Scholar 

  • Uller T, While GM, Cadby CD, Harts A, O’Connor K, Pen I, Wapstra E (2011) Altitudinal divergence in maternal thermoregulatory behaviour may be driven by differences in selection on offspring survival in a viviparous lizard. Evolution 65:2313–2324

    Article  PubMed  Google Scholar 

  • Valenzuela N, Lance VA (2004) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington DC

    Google Scholar 

  • Wang YZ, Fu JZ (2004) Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia 2004:199–206

    Article  Google Scholar 

  • Wapstra E, Uller T, While GM, Olsson M, Shine R (2010) Giving offspring a head start in life: field and experimental evidence for selection on maternal basking in a lizard. J Evol Biol 23:651–657

    Article  CAS  PubMed  Google Scholar 

  • Warner DA, Andrews RM (2002) Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol J Linn Soc 76:105–124

    Article  Google Scholar 

  • Webb JK, Shine R, Christian KA (2006) The adaptive significance of reptilian viviparity in the tropics: testing the maternal manipulation hypothesis. Evolution 60:115–122

    PubMed  Google Scholar 

  • Zhang XD (2006) Thermal ecology of the Qinghai toad-headed lizard, Phrynocephalus vlangalii (Agamidae). Master’s thesis, Nanjing Normal University, Nanjing

    Google Scholar 

  • Zhang XD, Ji X, Luo LG, Gao JF, Zhang L (2005) Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zool Sin 51:1006–1012

    Google Scholar 

  • Zhao KT (1999) Agamidae. In: Zhao EM, Zhao KT, Zhou KY (eds) Fauna Sinica, Reptilia, vol 2. Science Press, Beijing, pp 189–191

    Google Scholar 

Download references

Acknowledgments

Our experimental procedures complied with the current laws on animal welfare and research in China, and were approved by the Animal Research Ethics Committee of Nanjing Normal University (AREC2007-04-012). Funding for this work was supported by grants from the Natural Science Foundation of China (31071910 and 31200282) and Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Jian-Fang Gao, Ya-Qing Liu, Neng-Hui Sun and Xi-Dong Zhang for their help during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ji.

Additional information

Communicated by Raoul Van Damme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Lu, HL., Ma, L. et al. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia 174, 639–649 (2014). https://doi.org/10.1007/s00442-013-2811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2811-8

Keywords

Navigation