Skip to main content
Log in

Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant resorption of multiple nutrients during leaf senescence has been established but stoichiometric changes among N, P and K during resorption and after fertilization are poorly understood. We anticipated that increased N supply would lead to further P limitation or co-limitation with N or K [i.e. P-(co)limitation], decrease N resorption and increase P and K resorption, while P and K addition would decrease P and K resorption and increase N resorption. Furthermore, Ca would accumulate while Mg would be resorbed during leaf senescence, irrespective of fertilization. We investigated the effect of N, P and K addition on resorption in two evergreen shrubs (Chamaedaphne calyculata and Rhododendron groenlandicum) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. In general, N addition caused further P-(co)limitation, increased P and K resorption efficiency but did not affect N resorption. P and K addition did not shift the system to N limitation and affect K resorption, but reduced P resorption proficiency. C. calyculata resorbed both Ca and Mg while R. groenlandicum resorbed neither. C. calyculata showed a higher resorption than R. groenlandicum, suggesting it is better adapted to nutrient deficiency than R. groenlandicum. Resorption during leaf senescence decreased N:P, N:K and K:P ratios. The limited response of N and K and the response of P resorption to fertilization reflect the stoichiometric coupling of nutrient cycling, which varies among the two shrub species; changes in species composition may affect nutrient cycling in bogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi:10.2307/2261481

    Article  Google Scholar 

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, the Netherlands, pp 85–122

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1

    CAS  Google Scholar 

  • Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140. doi:10.2307/2261070

    Article  Google Scholar 

  • Anderson W, Eickmeier WG (2000) Nutrient resorption in Claytonia virginica L.: implications for deciduous forest nutrient cycling. Can J Bot 78:832–839. doi:10.1139/b00-056

    Google Scholar 

  • Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67:69–79. doi:10.2307/1938504

    Article  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  CAS  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616. doi:10.1111/j.1469-8137.2004.01154.x

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biol 13:1168–1186. doi:10.1111/j.1365-2486.2007.01346.x

    Article  Google Scholar 

  • Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S (2011) Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 167:355–368. doi:10.1007/s00442-011-1998-9

    Article  PubMed  Google Scholar 

  • Canadian Climate Normals (1971–2000) National climate data and information archive. http://climate.weatheroffice.ec.gc.ca/climate_normals. Accessed 01-April-2013

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn re-translocation in evergreen and deciduous taiga trees. Ecology 64:376–391. doi:10.2307/1937083

    Article  CAS  Google Scholar 

  • Chapin FS, Moilanen L (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715. doi:10.2307/2937210

    Article  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298. doi:10.1146/annurev.pp.31.060180.001323

    Article  CAS  Google Scholar 

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70. doi:10.1111/j.1654-1103.2003.tb02128.x

    Article  Google Scholar 

  • Eckstein RL, Karlsson PS, Weih M (1998) The significance of resorption of leaf resources for shoot growth in evergreen and deciduous woody plants from a subarctic environment. Oikos 81:567–575. doi:10.2307/3546777

    Article  Google Scholar 

  • Escudero A, Delarco JM, Sanz IC, Ayala J (1992) Effects of leaf longevity and re-translocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87. doi:10.1007/BF00317812

    Article  Google Scholar 

  • Feller IC, McKee KL, Whigham DF, O’Neill JP (2003) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–175. doi:10.1023/A:1021166010892

    Article  CAS  Google Scholar 

  • Glaser PH (1992) Raised bogs in eastern North America—regional controls for species richness and floristic assemblages. J Ecol 80:535–554. doi:10.2307/2260697

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi:10.2307/1941811

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537. doi:10.1046/j.1469-8137.2000.00717.x

    Article  CAS  Google Scholar 

  • Güsewell S (2005) Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct Ecol 19:344–354. doi:10.1111/j.1365-2435.2005.00967.x

    Article  Google Scholar 

  • Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biol 8:1130–1138. doi:10.1046/j.1365-2486.2002.00535.x

    Article  Google Scholar 

  • Karlsson PF (1994) The significance of internal nutrient cycling in branches for growth and reproduction of Rhododendron lapponicum. Oikos 70:191–200. doi:10.2307/3545630

    Article  Google Scholar 

  • Killingbeck KT (1986) The terminological jungle revisited: making a case for use of the term resorption. Oikos 46:263–264. doi:10.2307/3565477

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Knops JMH, Koenig WD, Nash TH (1997) On the relationship between nutrient use efficiency and fertility in forest ecosystems. Oecologia 110:550–556. doi:10.2307/4221644

    Article  Google Scholar 

  • Kobe RK, Lepczyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780–2792. doi:10.1890/04-1830

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Li XF, Zheng XB, Han SJ, Zheng JQ, Li TG (2010) Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Can J For Res 40:2256–2261. doi:10.1139/X10-167

    Article  CAS  Google Scholar 

  • Loneragan JF, Snowball K, Robson AD (1976) Remobilization of nutrients and its significance in plant nutrition. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 463–469

    Chapter  Google Scholar 

  • Moore T, Blodau C, Turunen J, Roulet N, Richard PJH (2004) Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Global Change Biol 11:356–367. doi:10.1111/j.1365-2486.2004.00882.x

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • Nambiar EKS, Fife DN (1991) Nutrient re-translocation in temperate conifers. Tree Physiol 9:185–207. doi:10.1093/treephys/9.1-2.185

    Article  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916. doi:10.1038/31921

    Article  Google Scholar 

  • Negi GCS, Singh SP (1993) Leaf nitrogen dynamics with particular reference to re-translocation in evergreen and deciduous tree species of Kumaun Himalaya. Can J For Res 23:349–357. doi:10.1139/x93-051

    Article  CAS  Google Scholar 

  • Nordell KO, Karlsson PS (1995) Resorption of nitrogen and dry matter prior to leaf abscission: variation among individuals, sites and years in the mountain birch. Funct Ecol 9:326–333. doi:10.2307/2390581

    Article  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199. doi:10.1890/01-0639

    Article  Google Scholar 

  • Parkinson JA, Allen SE (1975) Wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plan 6:1–11. doi:10.1080/00103627509366539

    Article  CAS  Google Scholar 

  • Peri PL, Lasagno RG (2010) Biomass, carbon and nutrient storage for dominant grasses of cold temperate steppe grasslands in southern Patagonia, Argentina. J Arid Environ 74:23–34. doi:10.1016/j.jaridenv.2009.06.015

    Article  Google Scholar 

  • Pugnaire FI, Chapin FS (1993) Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124–129. doi:10.2307/1939507

    Article  Google Scholar 

  • Ralhan PK, Singh SP (1987) Dynamics of nutrients and leaf mass in central Himalayan forest trees and shrubs. Ecology 68:1974–1983. doi:10.2307/1939888

    Article  Google Scholar 

  • Reader RJ (1980) Effects of nitrogen fertilizer, shade, and the removal of new growth on longevity of overwintering bog ericad leaves. Can J Bot 58:1737–1743. doi:10.1139/b80-201

    Article  Google Scholar 

  • Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012) Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol 196:173–180. doi:10.1111/j.1469-8137.2012.04249.x

    Article  CAS  PubMed  Google Scholar 

  • Rejmánková E (2005) Nutrient resorption in wetland macroPhytes: comparison across several regions of different nutrient status. New Phytol 167:471–482. doi:10.1111/j.1469-8137.2005.01449.x

    Article  PubMed  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AW, Cornelissen JHC, Gurevitch J, Gcte-News (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562 doi: 10.1007/s004420000544

  • Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, New York

    Book  Google Scholar 

  • Shipley B, Vile D, Garnier E, Wright IJ, Poorter H (2005) Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct Ecol 19:602–615. doi:10.1111/j.1365-2435.2005.01008.x

    Article  Google Scholar 

  • Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi:10.1139/b72-289

    Article  CAS  Google Scholar 

  • Sterner RW, Elser J (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, New Jersey

    Google Scholar 

  • Straker CJ (1996) Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza 6:215–225. doi:10.1007/s005720050129

    Article  Google Scholar 

  • Turunen J, Roulet NT, Moore TR, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochem Cycles 18:GB3002 doi: 10.1029/2003gb002154

  • van den Driessche R, Rieche K (1974) Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev 40:347–394. doi:10.1007/BF02860066

    Article  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003a) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101:664–669. doi:10.1034/j.1600-0706.2003.12351.x

    Article  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003b) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070. doi:10.1046/j.1365-2745.2003.00828.x

    Article  Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. doi:10.1890/11-0416.1

    Article  Google Scholar 

  • Verhoeven JTA, Keuter A, Logtestijn RV, Kerkhoven MB, Wassen M (1996) Control of local nutrient dynamics in mires by regional and climatic factors: a comparison of Dutch and Polish sites. J Ecol 84:647–656. doi:10.2307/2261328

    Article  Google Scholar 

  • Vitousek PM (1998) Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401–407. doi:10.1007/s100219900033

    Article  CAS  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi:10.1046/j.1365-2435.2003.00694.x

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2009a) Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol Biogeogr 18:11–18. doi:10.1111/j.1466-8238.2008.00425.x

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2009b) Global trends in senesced-leaf nitrogen and phosphorus. Global Ecol Biogeogr 18:532–542. doi:10.1111/j.1466-8238.2009.00474.x

    Article  Google Scholar 

  • Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen QS (2005) Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ 63:191–202. doi:10.1016/j.jaridenv.2005.01.023

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the field and/or laboratory assistance of Angela Grant, Agnieszka Adamowicz-Walczak, Hélène Lalande and Mike Dalva and the comments of Jill Bubier. M. W. was financially supported by the Chinese Scholarship Council for his Ph.D. study and the research was funded by a Natural Sciences and Engineering Research Council Discovery Grant to T. R. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Additional information

Communicated by Jason P. Kaye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Murphy, M.T. & Moore, T.R. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia 174, 365–377 (2014). https://doi.org/10.1007/s00442-013-2784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2784-7

Keywords

Navigation