Skip to main content

Advertisement

Log in

Response diversity of wild bees to overwintering temperatures

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5–9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant–pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large-scale perspective. Funct Ecol 16:332–338

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–20649. doi:10.1073/pnas.1115559108

    Article  PubMed  CAS  Google Scholar 

  • Bosch J, Kemp WP (2003) Effect of wintering duration and temperature on survival and emergence time in males of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environ Entomol 32:711–716. doi:10.1603/0046-225X-32.4.711

    Article  Google Scholar 

  • Bosch J, Kemp WP (2004) Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie 35:469–479. doi:10.1051/apido:2004035

    Article  Google Scholar 

  • Bosch J, Vicens N (2002) Body size as an estimator of production costs in a solitary bee. Ecol Entomol 27:129–137

    Article  Google Scholar 

  • Bosch J, Kemp WP, Peterson SS (2000) Management of Osmia lignaria (Hymenoptera: Megachilidae) populations for almond pollination: methods to advance bee emergence. Environ Entomol 29:874–883

    Article  Google Scholar 

  • Bosch J, Sgolastra F, Kemp WP (2010) Timing of eclosion affects diapause development, fat body consumption and longevity in Osmia lignaria, a univoltine, adult-wintering solitary bee. J Insect Physiol 56:1949–1957

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Christensen J, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

  • Corbet S, Fussell M, Ake R et al (1993) Temperature and the pollinating activity of social bees. Ecol Entomol 18:17–30

    Article  Google Scholar 

  • Diamond SE, Sorger DM, Hulcr J et al (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob Change Biol 18:448–456. doi:10.1111/j.1365-2486.2011.02542.x

    Article  Google Scholar 

  • Eickwort GC, Ginsberg HS (1980) Foraging and mating behavior in Apoidea. Annu Rev Entomol 25:421–446

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nyström M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westfälisch Mus Naturk 68:11–57

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691. doi:10.1126/science.1071617

    Article  PubMed  CAS  Google Scholar 

  • Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81:469–491

    Article  Google Scholar 

  • Geyer J, Kiefer I, Kreft S et al (2011) Classification of climate-change-induced stresses on biological diversity. Conserv Biol 25:708–715. doi:10.1111/j.1523-1739.2011.01676.x

    Article  PubMed  Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495. doi:10.1007/s00442-005-0240-z

    Article  PubMed  Google Scholar 

  • Gruber B, Eckel K, Everaars J, Dormann CF (2011) On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie 42:564–576. doi:10.1007/s13592-011-0059-z

    Article  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Irwin JT, Lee REJ (2003) Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100:71–78

    Article  Google Scholar 

  • Janion C, Worland MR, Chown SL (2009) Assemblage level variation in springtail lower lethal temperature: the role of invasive species on sub-Antarctic Marion Island. Physiol Entomol 34:284–291. doi:10.1111/j.1365-3032.2009.00689.x

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kemp W, Bosch J (2000) Development and emergence of the alfalfa pollinator Megachile rotundata (Hymenoptera: Megachilidae). Ann Entomol Soc Am 93:904–911

    Article  Google Scholar 

  • Kemp WP, Bosch J (2005) Effect of temperature on Osmia lignaria (Hymenoptera: Megachilidae) prepupa-adult development, survival, and emergence. J Econ Entomol 98:1917–1923

    Article  PubMed  CAS  Google Scholar 

  • Kemp W, Bosch J, Dennis B (2004) Oxygen consumption during the life cycles of the prepupa-wintering bee Megachile rotundata and the adult-wintering bee Osmia lignaria (Hymenoptera: Megachilidae). Ann Entomol Soc Am 97:161–170

    Article  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Article  Google Scholar 

  • Krunic MD, Hinks CF (1972) The effect of temperature and of temperature pretreatment on diapause and on the synchronization of adult emergence in Megachile rotundata (Hymenoptera: Megachilidae). Can Entomol 104:889–893. doi:10.4039/Ent104889-6

    Article  Google Scholar 

  • Laliberte E, Wells JA, DeClerck F et al (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86

    Article  PubMed  Google Scholar 

  • Leather SR, Walters KFA, Bale JS (1993) The ecology of insect overwintering. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717. doi:10.1111/j.1461-0248.2007.01061.x

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. doi:10.1038/37348

    Article  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parsche S, Fründ J, Tscharntke T (2011) Experimental environmental change and mutualistic vs. antagonistic plant flower-visitor interactions. Perspect Plant Ecol Evol Syst 13:27–35. doi:10.1016/j.ppees.2010.12.001

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, et al. (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1–98.http://cran.r-project.org/web/packages/nlme/citation.html

  • Pitts-Singer TL, Cane JH (2011) The alfalfa leafcutting bee, Megachile rotundata: the world’s most intensively managed solitary bee. Annu Rev Entomol 56:221–237. doi:10.1146/annurev-ento-120709-144836

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radmacher S, Strohm E (2011) Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). Apidologie 42:711–720. doi:10.1007/s13592-011-0078-9

    Article  Google Scholar 

  • Rafferty NE, Ives AR (2011) Effects of experimental shifts in flowering phenology on plant–pollinator interactions. Ecol Lett 14:69–74

    Article  PubMed  Google Scholar 

  • Richards KW, Whitfield GH, Schaalje GB (1987) Effects of temperature and duration of winter storage on survival and period of emergence for the alfalfa leafcutter bee (Hymenoptera: Megachilidae). J Kans Entomol Soc 60:70–76

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  PubMed  CAS  Google Scholar 

  • Sgolastra F, Bosch J, Molowny-Horas R et al (2010) Effect of temperature regime on diapause intensity in an adult-wintering Hymenopteran with obligate diapause. J Insect Physiol 56:185–194

    Article  PubMed  CAS  Google Scholar 

  • Sgolastra F, Kemp WP, Buckner JS et al (2011) The long summer: pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. J Insect Physiol 57:1651–1659. doi:10.1016/j.jinsphys.2011.08.017

    Article  PubMed  CAS  Google Scholar 

  • Sgolastra F, Kemp WP, Maini S, Bosch J (2012) Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia. J Insect Physiol 58:924–933. doi:10.1016/j.jinsphys.2012.04.008

    Article  PubMed  CAS  Google Scholar 

  • Stone GN (1994) Activity patterns of females of the solitary bee Anthophora plumipes in relation to temperature, nectar supplies and body size. Ecol Entomol 19:177–189. doi:10.1111/j.1365-2311.1994.tb00408.x

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  PubMed  CAS  Google Scholar 

  • Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ Entomol 29:413–420

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond B 272:2561–2569. doi:10.1098/rspb.2005.3356

    Article  Google Scholar 

  • Wallisdevries MF, Van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Change Biol 12:1620–1626. doi:10.1111/j.1365-2486.2006.01202.x

    Article  Google Scholar 

  • White J, Son Y, Park YL (2009) Temperature-dependent emergence of Osmia cornifrons (Hymenoptera: Megachilidae) adults. J Econ Entomol 102:2026–2032

    Article  PubMed  Google Scholar 

  • Willmer P (2012) Ecology: pollinator–plant synchrony tested by climate change. Curr Biol 22:R131–R132

    Article  PubMed  CAS  Google Scholar 

  • Winfree R, Kremen C (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc R Soc Lond B 276:229–237

    Article  Google Scholar 

  • Winfree R, Williams NM, Dushoff J, Kremen C (2007) Native bees provide insurance against ongoing honey bee losses. Ecol Lett 10:1105–1113. doi:10.1111/j.1461-0248.2007.01110.x

    Article  PubMed  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We kindly thank all departments of the University of Göttingen who helped by providing climate chambers, and Heinz Coners, Barbara Hohlmann, Evelyn Vorbeck and Hans-Otto Heise for technical assistance. We thank Bernd Gruber, Carsten Dormann, Maximilian von Fragstein and Mike Hermann for providing bees and Susanne Schiele for practical advice, and Ignasi Bartomeus and Jordi Bosch for comments that greatly improved the manuscript. Funding was provided to J.F. by a scholarship of the DBU (German Federal Environmental Foundation), and to T.T. by DFG (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Fründ.

Additional information

Communicated by Jochen Fründ.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fründ, J., Zieger, S.L. & Tscharntke, T. Response diversity of wild bees to overwintering temperatures. Oecologia 173, 1639–1648 (2013). https://doi.org/10.1007/s00442-013-2729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2729-1

Keywords

Navigation