Skip to main content

Advertisement

Log in

Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Both atmospheric [CO2] and average surface temperatures are predicted to increase with potentially different, additive or opposing, effects on leaf quality and insect herbivore activity. Few studies have directly measured the interactive effects of concurrent changes in [CO2] and temperature on insect herbivores. None have done so over the entire developmental period of a tree-feeding insect, and none have compared responses to low pre-industrial [CO2] and present day [CO2] to estimate responses to future increases. Eucalypt herbivores may be particularly sensitive to climate-driven shifts in plant chemistry, as eucalypt foliage is naturally low in [N]. In this study, we assessed the development of the eucalypt herbivore Doratifera quadriguttata exposed concurrently to variable [CO2] (290, 400, 650 μmol mol−1) and temperature (ambient, ambient +4 °C) on glasshouse-grown Eucalyptus tereticornis. Overall, insects performed best on foliage grown at pre-industrial [CO2], indicating that modern insect herbivores have already experienced nutritional shifts since industrialisation. Rising [CO2] increased specific leaf mass and leaf carbohydrate concentration, subsequently reducing leaf [N]. Lower leaf [N] induced compensatory feeding and impeded insect performance, particularly by prolonging larval development. Importantly, elevated temperature dampened the negative effects of rising [CO2] on larval performance. Therefore, rising [CO2] over the past 200 years may have reduced forage quality for eucalypt insects, but concurrent temperature increases may have partially compensated for this, and may continue to do so in the future. These results highlight the importance of assessing plant–insect interactions within the context of multiple climate-change factors because of the interactive and potentially opposing effects of different factors within and between trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–371. doi:10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270. doi:10.1111/j.1365-3040.2007.01641.x

    Article  PubMed  CAS  Google Scholar 

  • Axford Y, Briner JP, Francis DR, Miller GH, Walker IR, Wolfe AP (2011) Chironomids record terrestrial temperature changes throughout Arctic interglacials of the past 200,000 years. Geol Soc Am Bull 123(7–8):1275–1287. doi:10.1130/b30329.1

    Article  CAS  Google Scholar 

  • Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol 190(4):1003–1018. doi:10.1111/j.1469-8137.2011.03673.x

    Article  PubMed  Google Scholar 

  • Barton CVM, Ellsworth DS, Medlyn BE, Duursma RA, Tissue DT, Adams MA, Eamus D, Conroy JP, McMurtie RE, Parsaby J, Linder S (2010) Whole-tree chambers for elevated atmospheric CO2 experimentation and tree scale flux measurements in south-eastern Australia: the Hawkesbury Forest Experiment. Agr Forest Meteorol 150:941–951

    Article  Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob Change Biol 8(10):954–971

    Article  Google Scholar 

  • Brooks GL, Whittaker JB (1998) Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Glob Change Biol 4(1):63–75. doi:10.1046/j.1365-2486.1998.00111.x

    Article  Google Scholar 

  • Chong JH, van Iersel MW, Oetting RD (2004) Effects of elevated carbon dioxide levels and temperature on the life history of the Madeira mealybug (Hemiptera: Pseudococcidae). J Entomol Sci 39(3):387–397

    Google Scholar 

  • Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133(1):62–69. doi:10.1007/s00442-002-1005-6

    Article  Google Scholar 

  • Common I (1990) Moths of Australia. Melbourne University Press, Carlton

    Google Scholar 

  • Dewar RC, Watt AD (1992) Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89(4):557–559

    Google Scholar 

  • Dippery JK, Tissue DT, Thomas RB, Strain BR (1995) Effects of low and elevated CO2 on C-3 and C-4 annuals. 1. Growth and biomass allocation. Oecologia 101(1):13–20. doi:10.1007/bf00328894

    Google Scholar 

  • Docherty M, Wade FA, Hurst DK, Whittaker JB, Lea PJ (1997) Responses of tree sap-feeding herbivores to elevated CO2. Glob Change Biol 3(1):51–59

    Article  Google Scholar 

  • Ebell LF (1969) Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry 8:227–233

    Article  CAS  Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1989) The effects of enriched carbon dioxide atmospheres on plant–insect herbivore interactions. Science 243:1198–1200

    Google Scholar 

  • Flynn DFB, Sudderth EA, Bazzaz FA (2006) Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environ Exp Bot 56(1):10–18. doi:10.1016/j.envexpbot.2004.12.001

    Article  CAS  Google Scholar 

  • Fox LR, Macauley BJ (1977) Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29(2):145–162

    Google Scholar 

  • Froggatt WW (1923) Forest insects of Australia. Government Printer, Sydney

    Book  Google Scholar 

  • Gerhart LM, Ward JK (2010) Plant responses to low [CO2] of the past. New Phytol 188(3):674–695. doi:10.1111/j.1469-8137.2010.03441.x

    Article  PubMed  Google Scholar 

  • Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, Lewis JD, Tissue DT (2010a) Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob Change Biol 16(1):303–319. doi:10.1111/j.1365-2486.2009.02003.x

    Article  Google Scholar 

  • Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP, Tissue DT (2010b) Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant Cell Environ 33:1671–1681

    Article  PubMed  CAS  Google Scholar 

  • Henery ML, Wallis IR, Stone C, Foley WJ (2008) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Oecologia 156(4):847–859

    Article  PubMed  CAS  Google Scholar 

  • Hill JK, Hodkinson ID (1995) Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera: Psylloidea) on dwarf willow (Salix lapponum) in Norway. Ecol Entomol 20(3):237–244

    Article  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat availability determine 20th century changes in a butterfly’s range margin. P Roy Soc Lond B Bio 266(1425):1197–1206

    Article  Google Scholar 

  • Hoffmann AA, Hallas RJ, Dean JA, Schiffer M (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301(5629):100–102. doi:10.1126/science.1084296

    Article  PubMed  CAS  Google Scholar 

  • Hughes L, Cawsey EM, Westoby M (1996) Climatic range sizes of Eucalyptus species in relation to future climate change. Global Ecol Biogeogr 5(1):23–29. doi:10.2307/2997467

    Article  Google Scholar 

  • Johns CV, Hughes A (2002) Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Glob Change Biol 8(2):142–152

    Article  Google Scholar 

  • Johns CV, Beaumont LJ, Hughes L (2003) Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomol Exp Appl 108:169–178

    Article  Google Scholar 

  • Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109(1):59–68

    Article  Google Scholar 

  • Leather SR (1988) Size, reproductive potential and fecundity in insects: things aren’t as simple as they seem. Oikos 51(3):386–389

    Article  Google Scholar 

  • Lewis JD, Ward JK, Tissue DT (2010) Phosphorus supply drives nonlinear responses of cottonwood (Populus deltoides) to increases in CO2 concentration from glacial to future concentrations. New Phytol 187(2):438–448. doi:10.1111/j.1469-8137.2010.03307.x

    Article  PubMed  CAS  Google Scholar 

  • Lincoln DE, Couvet D, Sionit N (1986) Responses of an insect herbivore to host plants grown in carbon-dioxide enriched atmospheres. Oecologia 69(4):556–560. doi:10.1007/bf00410362

    Article  Google Scholar 

  • Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74(3):763–777. doi:10.2307/1940804

    Article  CAS  Google Scholar 

  • Massad TJ, Dyer LA (2010) A meta-analysis of the effects of global environmental change on plant–herbivore interactions. Arthropod-Plant Inte 4(3):181–188. doi:10.1007/s11829-010-9102-7

    Google Scholar 

  • MPIGA (2008) Montreal process implementation group for Australia, Australia’s state of the forests report 2008. Bureau of Rural Science, Canberra

    Google Scholar 

  • Nahrung HF, Dunstan PK, Allen GR (2001) Larval gregariousness and neonate establishment of the eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos 94(2):358–364

    Article  Google Scholar 

  • Ohmart CP, Edwards PB (1991) Insect herbivory on Eucalyptus. Annu Rev Entomol 36:637–657

    Article  Google Scholar 

  • Overpeck JT, Bartlein PJ, Webb T (1991) Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science 254(5032):692–695

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399(6736):579–583

    Article  CAS  Google Scholar 

  • Pinkard EA, Battaglia M, Roxburgh S, O’Grady AP (2011) Estimating forest net primary production under changing climate: adding pests into the equation. Tree Physiol 31(7):686–699

    Article  PubMed  CAS  Google Scholar 

  • Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189(4):988–998. doi:10.1111/j.1469-8137.2010.03620.x

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-90051-07-0. http://www.R-project.org

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194(2):321–336. doi:10.1111/j.1469-8137.2012.04074.x

    Google Scholar 

  • Sage RF, Coleman JR (2001) Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci 6(1):18–24. doi:10.1016/s1360-1385(00)01813-6

    Article  PubMed  CAS  Google Scholar 

  • Solomon SD, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Toignor M, Miller HL (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge

  • Springett BP (1978) On the ecological role of insects in Australian eucalypt forests. Aust J Ecol 3:129–139

    Article  Google Scholar 

  • Steinbauer MJ (2001) Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Austral For 64:32–37

    Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13(9):1823–1842. doi:10.1111/j.1365-2486.2007.01392.x

  • Stiling P, Rossi AM, Hungate B, Dijkstra P, Hinkle CR, Knott WM III, Drake B (1999) Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol Appl 9:240–244

    PubMed  CAS  Google Scholar 

  • Tissue DT, Lewis JD (2010) Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric CO2 vary with phosphorus supply. Tree Physiol 30(11):1361–1372. doi:10.1093/treephys/tpq077

    Article  PubMed  CAS  Google Scholar 

  • Tissue DT, Lewis JD (2012) Learning from the past: how low [CO2] studies inform plant and ecosystem response to future climate change. New Phytol 194(1):4–6

    Article  PubMed  CAS  Google Scholar 

  • van Asch M, Tienderen PH, Holleman LJM, Visser ME (2007) Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob Change Biol 13(8):1596–1604. doi:10.1111/j.1365-2486.2007.01400.x

    Article  Google Scholar 

  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J (2002) Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Change Biol 8(12):1240–1252

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. P Roy Soc Lond B Bio 268(1464):289–294

    Article  CAS  Google Scholar 

  • Wallis IR, Nicolle D, Foley WJ (2010) Available and not total nitrogen in leaves explains key chemical differences between the eucalypt subgenera. Forest Ecol Manag 260:814–821

    Article  Google Scholar 

  • Wappler T, Denk T (2011) Herbivory in early tertiary Arctic forests. Palaeogeogr Palaeoecol 310(3–4):283–295. doi:10.1016/j.palaeo.2011.07.020

    Article  Google Scholar 

  • Ward JK, Kelly JK (2004) Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis. Ecol Lett 7(5):427–440. doi:10.1111/j.1461-0248.2004.00589.x

    Article  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30(6):669–688. doi:10.1093/treephys/tpq015

    Article  PubMed  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin

    Book  Google Scholar 

  • Williams RS, Norby RJ, Lincoln DE (2000) Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob Change Biol 6(6):685–695. doi:10.1046/j.1365-2486.2000.00343.x

    Article  Google Scholar 

  • Williams RS, Lincoln DE, Norby RJ (2003) Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137(1):114–122. doi:10.1007/s00442-003-1327-z

    Article  PubMed  Google Scholar 

  • Young CJ (2011) News bulletin of the Australian Entomological Society. Myrmecia 47(2):15

    Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a meta-analysis. Glob Change Biol 12(1):27–41. doi:10.1111/j.1365-2486.2005.01086.x

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Research Council (DP1095972 to MR and DSE; DP0879531 to DTT). We thank Sarah Bingham, Rosemary Freeman, Goran Lopaticki, Jenny Shanks and Renee Smith for technical assistance, Remko Duursma for statistical advice and Taronga Zoo for access to the E. tereticornis plantation on the UWS Hawkesbury campus. We gratefully acknowledge the helpful comments and suggestions of the editorial team and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Riegler.

Additional information

Communicated by Phyllis Coley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, T.J., Tissue, D.T., Ellsworth, D.S. et al. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus . Oecologia 171, 1025–1035 (2013). https://doi.org/10.1007/s00442-012-2467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2467-9

Keywords

Navigation