Skip to main content

Advertisement

Log in

Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C4 crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C3 carbon sources, whereas many farmland birds also assimilated C4 carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C4 carbon in the farmland than in the forest. Granivores assimilated more C4 carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km−2 year−1. We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balmford A, Moore JL, Brooks T, Burgess N, Hansen LA, Williams P, Rahbek C (2001) Conservation conflicts across Africa. Science 291:2616–2619

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  PubMed  CAS  Google Scholar 

  • Basili GD, Temple SA (1999) Dickcissels and crop damage in Venezuela: defining the problem with ecological models. Ecol Appl 9:732–739

    Article  Google Scholar 

  • Bearhop S, Teece MA, Waldron S, Furness RW (2000) Influence of lipid and uric acid upon δ13C and δ15N values of avian blood: implications for trophic studies. Auk 117:504–507

    Google Scholar 

  • Bearhop S, Furness RW, Hilton GM, Votier SC, Waldron S (2003) A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Funct Ecol 17:270–275

    Article  Google Scholar 

  • Berens DG, Farwig N, Schaab G, Böhning-Gaese K (2008) Exotic guavas are foci of forest regeneration in Kenyan farmland. Biotropica 40:104–112

    Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic Press, London

    Google Scholar 

  • Bierregaard RO Jr, Lovejoy TE, Kapos V, dos Santos AA, Hutchings RW (1992) The biological dynamics of tropical rainforest fragments. Bioscience 42:859–866

    Article  Google Scholar 

  • BirdLife International (2009) Important bird area factsheet: Kakamega Forest, Kenya. http://www.birdlife.org. Accessed 12 Oct 2009

  • Blackett HL 1994: Forest inventory report no. 3: Kakamega. KIFCON, Nairobi

  • Bleher B, Uster D, Bergsdorf T (2006) Assessment of threat status and management effectiveness in Kakamega Forest, Kenya. Biodivers Conserv 15:1159–1177

    Article  Google Scholar 

  • Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Apppl 21:1017–1023

    Article  Google Scholar 

  • Burney CW, Brumfield RT (2009) Ecology predicts level of genetic differentiation in neotropical birds. Am Nat 174:358–386

    Article  PubMed  Google Scholar 

  • Carnicer J, Abrams PA, Jordano P (2008) Switching behavior, coexistence and diversification: comparing empirical community-wide evidence with theoretical predictions. Ecol Lett 11:802–808

    Article  PubMed  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C) The effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836

    Article  PubMed  Google Scholar 

  • Clark RG, Hobson KA, Wassenaar LI (2006) Geographic variation in the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 84:1395–1401

    Article  CAS  Google Scholar 

  • Conover WJ, Johnson ME, Johnson MM (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23:351–361

    Article  Google Scholar 

  • Coplen TB, Brand WA, Gehre M, Groning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    Article  PubMed  CAS  Google Scholar 

  • Daily GC, Ehrlich PR, Sánchez-Azofeifa GA (2001) Countryside biogeography: utilization of human dominated habitats by the avifauna of southern Costa Rica. Ecol Appl 11:1–13

    Article  Google Scholar 

  • Dobush GR, Ankney CD, Krementz CD (1985) The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can J Zool 63:1917–1920

    Article  CAS  Google Scholar 

  • Eshiamwata GW, Berens DG, Bleher B, Dean WRJ, Böhning-Gaese K (2006) Bird assemblages in isolated Ficus trees in Kenyan farmland. J Trop Ecol 22:723–726

    Article  Google Scholar 

  • Farwig N, Böhning-Gaese K, Bleher B (2006) Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests? Oecologia 147:238–252

    Article  PubMed  Google Scholar 

  • Farwig N, Sajita N, Böhning-Gaese K (2008) Conservation value of forest plantations in western Kenya. For Ecol Manage 255:3885–3892

    Article  Google Scholar 

  • Gámez-Virués S, Bonifacio RS, Gurr GM, Kinross C, Raman A, Nicol HI (2007) Arthropod prey of shelterbelt-associated birds: linking faecal samples with biological control of agricultural pests. Aust J Entomol 46:325–331

    Article  Google Scholar 

  • Gannes LZ, O’Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276

    Article  Google Scholar 

  • Hardesty J (2009) Using nitrogen-15 to examine protein sources in hummingbird diets. Ornitol Colomb 8:19–28

    Google Scholar 

  • Hatch KA, Pinshow B, Speakman JR (2002) Carbon isotope ratios in exhaled CO2 can be used to determine not just present, but also past diets in birds. J Comp Physiol B 172:263–268

    Article  PubMed  CAS  Google Scholar 

  • Herrera MLG, Reyna JC (2007) Stable carbon and nitrogen isotopic discrimination in whole blood of red-throated ant tanagers Habia fuscicauda. J Ornithol 148:235–240

    Article  Google Scholar 

  • Herrera LG, Hobson KA, Rodríguez M, Hernandez P (2003) Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136:439–444

    Article  PubMed  Google Scholar 

  • Herrera MLG, Hobson KA, Hernández PP, Rodríguez MG (2005) Quantifying differential responses to fruit abundance by two rainforest birds using long-term isotopic monitoring. Auk 122:783–792

    Article  Google Scholar 

  • Herrera MLG, Hobson KA, Martinez JC, Mendez CG (2006) Tracing the origin of dietary protein in tropical dry forest birds. Biotropica 38:735–742

    Article  Google Scholar 

  • Herrera MLG, Rodríguez MG, Hernández PP (2009) Sources of assimilated protein in a specialized tropical frugivorous bird, the yellow-throated Euphonia (Euphonia hirundinacea). Auk 126:175–180

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Bairlein F (2003) Isotopic fractionation and turnover in captive garden warblers (Sylvia borin) implications for delineating dietary and migratory associations in wild passerines. Can J Zool 81:1630–1635

    Article  Google Scholar 

  • Hobson KA, Clark RW (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:1720–1723

    Article  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hughes JB, Daily GC, Ehrlich PR (2002) Conservation of tropical forest birds in countryside habitats. Ecol Lett 5:121–129

    Article  Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Article  Google Scholar 

  • Kirika JM, Farwig N, Böhning-Gaese K (2008a) Effects of local disturbance of tropical forests on frugivores and seed removal of a small-seeded afrotropical tree. Conserv Biol 22:318–328

    Article  PubMed  Google Scholar 

  • Kirika JM, Bleher B, Böhning-Gaese K, Chira R, Farwig N (2008b) Fragmentation and local disturbance of forests reduce frugivore diversity and fruit removal in Ficus thonningii trees. Basic Appl Ecol 9:663–672

    Article  Google Scholar 

  • Kissling WD, Rahbek C, Böhning-Gaese K (2007) Food plant diversity as broad-scale determinant of avian frugivore richness. Proc R Soc B 274:799–808

    Article  PubMed  Google Scholar 

  • Kokwaro JO (1988) Conservation status of the Kakamega Forest in Kenya: the easternmost relic of the equatorial rain forests of Africa. Monogr Syst Bot Mo Bot Gard 25:471–489

    Google Scholar 

  • Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  • Laube I, Breitbach N, Böhning-Gaese K (2008) Avian diversity in a Kenyan agroecosystem: effects of habitat structure and proximity to forest. J Ornithol 149:181–191

    Article  Google Scholar 

  • Laurance SGW, Stouffer PC, Laurance WF (2004) Effects of road clearings on movement patterns of understory rainforest birds in central Amazonia. Conserv Biol 18:1099–1109

    Article  Google Scholar 

  • Luck GW, Daily GC (2003) Tropical countryside bird assemblages: richness, composition, and foraging differ by landscape context. Ecol Appl 13:235–247

    Article  Google Scholar 

  • Meyer CK, Whiles MR, Charlton RE (2002) Life history, secondary production, and ecosystem significance of arcridid grasshoppers in annually burned and unburned tallgrass prairie. Am Entomol 48:52–61

    Google Scholar 

  • Mulwa RK, Böhning-Gaese K, Schleuning M (2012) High bird species diversity in structurally heterogeneous farmland in western Kenya. Biotropica (in press)

  • Nagy KA (2001) Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutr Abstr Rev B 71:21–31

    Google Scholar 

  • Newmark WD (1991) Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara Mountains, Tanzania. Conserv Biol 5:67–77

    Article  Google Scholar 

  • O’Rorke R, Lavery S, Jeffs A (2012) PCR enrichment techniques to identify the diet of predators. Mol Ecol Res 12:5–17

    Article  Google Scholar 

  • Ostrom PH, Colunga-Garcia M, Gage SH (1997) Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence. Oecologia 109:108–113

    Article  Google Scholar 

  • Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotope compositions to isotope reference scales—a review. Rap Comm Mass Spectrom 21:3006–3014

    Article  CAS  Google Scholar 

  • Pearson SF, Levey DJ, Greensberg CH, Martínez del Rio C (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523

    PubMed  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Philpott SM, Soong O, Lowenstein JH, Pulido AL, Lopez DT, Flynn DFB, DeClerck F (2001) Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol Appl 19:1858–1867

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Prasifka JR, Heinz KM (2004) The use of C3 and C4 plants to study natural enemy movement and ecology, and its application to pest management. Int J Pest Manage 50:177–181

    Article  Google Scholar 

  • R Development Core Team (2011) A language and environment for statistical computing. R Found Stat Comput, Vienna

    Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263

    Article  PubMed  Google Scholar 

  • Sarakinos HC, Johnson ML, Vander Zanden MJ (2002) A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Can J Zool 80:381–387

    Article  Google Scholar 

  • Schaab G, Kayota B, Eilu G, Wägele JW (eds) (2010) The BIOTA East Africa atlas. Rainforest change over time. Karlsruhe University of Applied Sciences, Faculty of Geomatics, Karlsruhe

    Google Scholar 

  • Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92:26–36

    Article  PubMed  Google Scholar 

  • Sekercioglu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF (2002) Disappearance of insectivorous birds from tropical forest fragments. Proc Natl Acad Sci 99:263–267

    Article  PubMed  CAS  Google Scholar 

  • Sekercioglu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci 101:18042–18047

    Article  PubMed  CAS  Google Scholar 

  • Sekercioglu CH, Loarie SR, Brenes FO, Ehrlich PR, Daily GC (2007) Persistence of forest birds in the Costa Rican Agricultural Countryside. Conserv Biol 21:482–494

    Article  PubMed  Google Scholar 

  • Shanni I, de Bruijn B (2006) A checklist of the birds of Kakamega Forest. East Afr Nat Hist Soc Bird Comm

  • Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Sutherland WJ (ed) (1996) Ecological census techniques: a handbook, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Vázquez D, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  Google Scholar 

  • Waltert M, Bobo KS, Sainge NM, Fermon H, Mühlenberg M (2005) From forest to farmland: habitat effects on afrotropical forest bird diversity. Ecol Appl 15:1351–1366

    Article  Google Scholar 

  • Waters TF (1969) The turnover ratio in production ecology of freshwater invertebrates. Am Nat 103:173–185

    Article  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414

    Article  PubMed  Google Scholar 

  • Westcott DA, Graham DL (2000) Patterns of movement and seed dispersal of a tropical frugivore. Oecologia 122:249–257

    Article  Google Scholar 

  • Witsack W (1975) Eine quantitative Keschermethode zur Erfassung der epigäischen Arthropoden-Fauna. Entomol Nachr 8:123–128

    Google Scholar 

  • Zimmermann DA, Turner DA, Pearson DJ (1999) Birds of Kenya, Northern Tanzania. Helm, London

    Google Scholar 

Download references

Acknowledgments

Edson Mlamba and Jonathan Mukaisi provided indispensable help with the field work. Willi Dindorf, Marc Ruppenthal, Brigitte Müller and Maria Müller helped with the stable isotope analysis. Daniel Kissling, Irina Laube, Nils Breitbach and Ronald Mulwa kindly provided useful unpublished data. Two anonymous reviewers provided valuable comments on an earlier version of this manuscript. Kenya Wildlife Service permitted us to work in Kakamega Forest. This work was funded by the German Federal Ministry of Education and Research within the framework of BIOTA East Africa (Subproject E11, 01LC0625E1) and by the research funding programme LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz of Hesse’s Ministry of Higher Education, Research, and the Arts. The field work complied with the current laws of Kenya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan W. Ferger.

Additional information

Communicated by Chris Whelan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferger, S.W., Böhning-Gaese, K., Wilcke, W. et al. Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities. Oecologia 171, 473–486 (2013). https://doi.org/10.1007/s00442-012-2422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2422-9

Keywords

Navigation