Skip to main content
Log in

Enhancing offspring quality or quantity? Different ways for using nectar amino acids in female butterflies

  • Plant-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Butterfly-pollinated flowers offer nectar with higher amino acid concentrations than most flowers pollinated by other animals, and female butterflies of some species prefer to consume amino acid-rich nectar. However, for over 30 years, there has been an ongoing discussion about whether nectar amino acids benefit butterfly fitness. A clear positive effect was only shown for the nectar-feeding Araschnia levana, and females of the fruit-feeding Bicyclus anynana also increased offspring quality when they were fed amino acids as adults. Thus, severe doubts remain about the general significance of these single positive results. We therefore tested a further species from a phylogenetically different butterfly subfamily, the small heath (Coenonympha pamphilus L., Satyrinae), taking into account feeding conditions over the whole life cycle of this species. C. pamphilus females receiving nectar amino acids as adults, irrespective of larval food quality, produced heavier larvae and also increased the hatching success of their eggs over the oviposition period. Furthermore, females raised under nitrogen-poor larval conditions tended to use nectar amino acids to increase the number of eggs laid. Thus, C. pamphilus females used nectar amino acids primarily to increase their offspring quality, and secondly tended to increase offspring quantity, if larval resources were scarce, showing a resource allocation pattern differing from both B. anynana and A. levana. Our study supports the old postulate that nectar amino acids generally enhance butterfly fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alm J, Ohnmeiss TE, Lanza J, Vriesenga L (1990) Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84:53–57

    Article  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164. doi:10.1006/anbe.2000.1446

    Article  PubMed  Google Scholar 

  • Baker HG (1975) Sugar concentrations in nectars from hummingbird flowers. Biotropica 7:37–41

    Article  Google Scholar 

  • Baker HG, Baker I (1973) Amino-acids in nectar and their evolutionary significance. Nature 241:543–545

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 100–140

    Google Scholar 

  • Baker HG, Baker I (1986) The occurrence and significance of amino acids in floral nectar. Plant Syst Evol 151:175–186

    Article  CAS  Google Scholar 

  • Bauerfeind SS, Fischer K (2007) Effects of adult nutrition on female reproduction in a fruit-feeding butterfly: The role of fruit decay and dietary lipids. J Insect Physiol 53:964–973. doi:10.1016/j.jinsphys.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  • Bauerfeind SS, Fischer K (2009) Effects of larval starvation and adult diet derived amino acids on reproduction in a fruit-feeding butterfly. Entomol Exp Appl 130:229–237. doi:10.1111/j.1570-7458.2008.00814.x

    Article  Google Scholar 

  • Boggs CL (1981) Nutritional and life-history determinants of resource allocation in holometabolous insects. Am Nat 117:692–709

    Article  Google Scholar 

  • Boggs CL (1997a) Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology 78:192–202

    Article  Google Scholar 

  • Boggs CL (1997b) Reproductive allocation from reserves and income in butterfly species with differing adult diets. Ecology 78:181–191

    Article  Google Scholar 

  • Boggs CL (2009) Understanding insect life histories and senescence through a resource allocation lens. Funct Ecol 23:27–37. doi:10.1111/j.1365-2435.2008.01527.x

    Article  Google Scholar 

  • Boggs CL, Freeman KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144:353–361. doi:10.1007/s00442-005-0076-6

    Article  PubMed  Google Scholar 

  • Boggs CL, Gilbert LE (1979) Male contribution to egg production in butterflies: evidence for transfer of nutrients at mating. Science 206:83–84

    Article  PubMed  CAS  Google Scholar 

  • Boggs CL, Ross CL (1993) The effect of adult food limitation on the life history traits in Speyeria mormonia (Lepidoptera: Nymphalidae). Ecology 74:433–441

    Article  Google Scholar 

  • Braby MF (1994) The significance of egg size variation in butterflies in relation to hostplant quality. Oikos 71:119–129

    Article  Google Scholar 

  • Carvalho GB, Kapahi P, Benzer S (2005) Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods 2:813–815. doi:10.1038/nmeth798

    Article  PubMed  CAS  Google Scholar 

  • Casas J, Pincebourde S, Mandon N, Vannier F, Poujol R, Giron D (2005) Lifetime nutrient dynamics reveal simultaneous capital and income breeding in a parasitoid. Ecology 86:545–554. doi:10.1890/04-0812

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex

    Book  Google Scholar 

  • Dadd RH (1973) Insect nutrition: Current developments and metabolic implications. Annu Rev Entomol 18:381–420

    Article  PubMed  CAS  Google Scholar 

  • Dunlap-Pianka H, Boggs CL, Gilbert LE (1977) Ovarian dynamics in heliconiine butterflies: programmed senescence versus eternal youth. Science 197:487–490

    Article  PubMed  CAS  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Eugen Ulmer, Stuttgrad

    Google Scholar 

  • Engleman F (1984) Ecological Entomology. Wiley, New York

    Google Scholar 

  • Erhardt A (1991) Nectar sugar and amino acid preferences of Battus philenor (Lepidoptera, Papilionidae). Ecol Entomol 16:425–434

    Article  Google Scholar 

  • Erhardt A (1992) Preferences and non-preferences for nectar constituents in Ornithoptera priamus poseidon (Lepidoptera, Papilionidae). Oecologia 90:581–585

    Article  Google Scholar 

  • Erhardt A, Rusterholz HP (1998) Do peacock butterflies (Inachis io L.) detect and prefer nectar amino acids and other nitrogenous compounds? Oecologia 117:536–542

    Article  Google Scholar 

  • Fischer K, Zwaan BJ, Brakefield PM (2002) How does egg size relate to body size in butterflies? Oecologia 3:375–379. doi:10.1007/s00442-002-0913-9

    Article  Google Scholar 

  • Fischer K, Bot ANM, Brakefield PM, Zwaan BJ (2003) Fitness consequences of temperature-mediated egg size plasticity in a butterfly. Funct Ecol 17:803–810

    Article  Google Scholar 

  • Fischer K, Bot ANM, Brakefield PM, Zwaan BJ (2006) Do mothers producing large offspring have to sacrifice fecundity? J Evolution Biol 19:380–391. doi:10.1111/j.1420-9101.2005.01046.x

    Article  CAS  Google Scholar 

  • Garcia-Barros E (2000) Body size, egg size and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperoidea). Biol J Linn Soc 70:251–284

    Article  Google Scholar 

  • Geister TL, Lorenz MW, Hoffmann KH, Fischer K (2008) Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success. Front Zool 5:10. doi:10.1186/1742-9994-5-10

    Article  PubMed  Google Scholar 

  • Goverde M, Erhardt A (2003) Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob Change Biol 9:74–83. doi:10.1007/s00265-003-0601-8

    Article  Google Scholar 

  • Hill CJ (1989) The effect of adult diet on the biology of butterflies. II. The common crow butterfly, Euploea core corinna. Oecologia 81:258–266

    Google Scholar 

  • Jervis MA, Boggs CL (2005) Linking nectar amino acids to fitness in female butterflies. Trends Ecol Evol 20:585–587. doi:10.1016/j.tree.2005.08.015

    Article  PubMed  Google Scholar 

  • Karlsson B (1998) Nuptial gifts, resource budgets, and reproductive output in a polyandrous butterfly. Ecology 79:2931–2940

    Google Scholar 

  • Karlsson B, Wiklund C (1984) Egg weight variation and lack of correlation between egg weight and offspring fitness in the wall brown butterfly, Lasiommata megera. Oikos 43:376–385

    Article  Google Scholar 

  • Karlsson B, Wiklund C (2005) Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 74:99–104. doi:10.1111/j.1365-2656.2004.00902.x

    Article  Google Scholar 

  • Koch M (1991) Schmetterlinge. Neumann, Radebeul, pp 138–139

  • Lüttge U (1961) Über die zusammensetzung des nektars und den mechanismus seiner sekretion. I. Planta 56:189–212

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Evol S 11:119–161. doi:10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  • Mevi-Schütz J, Erhardt A (2002) Can Inachis io detect nectar amino acids at low concentrations? Physiol Entomol 27:256–260. Physiol Entomol 27:256–260

    Article  Google Scholar 

  • Mevi-Schütz J, Erhardt A (2003a) Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84:2788–2794

    Article  Google Scholar 

  • Mevi-Schütz J, Erhardt A (2003b) Effects of nectar amino acids on fecundity of the wall brown butterfly (Lasiomata megera L.). Basic Appl Ecol 4:413–421

    Article  Google Scholar 

  • Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long awaited link. Am Nat 165:411–419

    Article  PubMed  Google Scholar 

  • Mevi-Schütz J, Goverde M, Erhardt A (2003) Effects of fertilization and elevated CO2 on larval food and butterfly nectar amino acid preference in Coenonympha pamphilus L. Behav Ecol Sociobiol 54:36–43. doi:10.1007/s00265-003-0601-8

    Article  Google Scholar 

  • Molleman F, Ding J, Wang J, Zwaan BJ, Carey JR, Brakefield PM (2008) Adult diet affects lifespan and reproduction of the fruit-feeding butterfly Charaxes fulvescens. Entomol Exp Appl 129:54–65. doi:10.1111/j.1570-7458.2008.00752.x

    Article  PubMed  Google Scholar 

  • Moore RA, Singer MC (1987) Effects of maternal age and adult diet on egg weight in the butterfly Euphydryas editha. Ecol Entomol 12:401–408

    Article  Google Scholar 

  • Murphy DD, Launer AE, Ehrlich PR (1983) The role of adult feeding in egg production and population dynamics of the checkerspot butterfly Euphydryas editha. Oecologia 56:257–263

    Article  Google Scholar 

  • Nakasuji F, Kimura M (1984) Seasonal polymorphism of egg size in a migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). Kontyu 52:253–259

    Google Scholar 

  • O’Brien DM, Boggs CL, Fogel ML (2002) Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proc Natl Acad Sci USA 99:4413–4418

    Article  PubMed  Google Scholar 

  • O’Brien DM, Boggs CL, Fogel ML (2003) Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs. Proc R Soc Lond B 270:2631–2636. doi:10.1098/rspb.2003.2552

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rusterholz HP, Erhardt A (1998a). Interactions of butterflies with their nectar plants under present conditions and elevated levels of atmospheric CO2. PhD dissertation, University of Basel, Basel

  • Rusterholz HP, Erhardt A (1998b) Effects of elevated CO2 on flowering phenology and nectar production in important nectar plants for butterflies of calcareous grasslands. Oecologia 113:341–349. doi:10.1007/s004420050385

    Article  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2006) Insect—plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Seko T, Nakasuji F (2004) Effect of egg size variation on survival rate, development and fecundity of offspring in a migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). Appl Entomol Zool 39:171–176

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer ED (1993) A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos Trans R Soc Lond B 342:381–402. doi:10.1098/rstb.1993.0166

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer ED (2007) Caloric restriction and aging revisited: the need for a geometric analysis of the nutritional bases of aging. J Gerontol 62A:707–713

    Google Scholar 

  • Wickman P-O, Karlsson B (1987) Changes in egg colour, egg weight and oviposition rate with the number of eggs laid by wild females of the small heath butterfly, Coenonympha pamphilus. Ecol Entomol 12:109–114

    Article  Google Scholar 

  • Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29

    Article  Google Scholar 

  • Wiklund C, Karlsson B (1984) Egg Size Variation in Satyrid Butterflies: Adaptive vs Historical, “Bauplan”, and Mechanistic Explanations. Oikos 43:391–400

    Article  Google Scholar 

  • Wiklund C, Persson A (1983) Fecundity, and the relation of egg weight to offspring fitness in the speckled wood butterfly Pararge aegeria, or why don’t butterfly females lay more eggs? Oikos 40:53–63

    Article  Google Scholar 

  • Wiklund C, Kaitala A, Lindfors V, Abenius J (1993) Polyandry and its effect on female reproduction in the green-veined white butterfly (Pieris napi L.). Behav Ecol Sociobiol 33:25–33

    Article  Google Scholar 

  • Ziegler H (1956) Untersuchungen über die leitung und sekretion der assimilate. Planta 47:447–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Mevi-Schütz for her help and accompaniment during the entire project; D. Aydin, M. Goverde, D. Bloch and P. Stoll for their valuable comments; R. Brandl, K. Fischer and two anonymous referees for their helpful reviews of the manuscript; J. Voellmy for her assistance in the greenhouse; V. and R. Cahenzli, Freiwillige Akademische Gesellschaft Basel, Basler Stiftung für biologische Forschung and Stiftung Emilia Guggenheim–Schnurr for their financial support and C. Körner for use of the greenhouse. This work is supported by the Fonds zur Förderung des akademischen Nachwuchses der Universität Basel (Project 65051 to A. Erhardt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Cahenzli.

Additional information

Communicated by Klaus Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahenzli, F., Erhardt, A. Enhancing offspring quality or quantity? Different ways for using nectar amino acids in female butterflies. Oecologia 169, 1005–1014 (2012). https://doi.org/10.1007/s00442-012-2254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2254-7

Keywords

Navigation