Skip to main content
Log in

Population density and phenotypic attributes influence the level of nematode parasitism in roe deer

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afonso E, Thulliez P, Gilot-Fromont E (2006) Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). Int J Parasitol 36:1373–1382

    Article  PubMed  Google Scholar 

  • Albon SD, Stien A, Irvine RJ, Langvatn R, Ropstad E, Halvorsen O (2002) The role of parasites in the dynamics of reindeer population. Proc R Soc Lond B 269:1625–1632

    Article  CAS  Google Scholar 

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and he dynamics of infectious diseases. Ecol Lett 9:467–484

    Article  PubMed  Google Scholar 

  • Andersen R, Gaillard J-M, Liberg O, San José C (1998) Variation in life history parameters in roe deer. In: Andersen R, Duncan P, Linnell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Norway, pp 285–308

    Google Scholar 

  • Andersen R, Gaillard J-M, Linnell J, Duncan P (2000) Factors affecting maternal care in an income breeder, the European roe deer. J Anim Ecol 69:672–682

    Article  Google Scholar 

  • Anderson RC (1992) Nematode parasites of vertebrates: their development and transmission. CABI, Cambridge

    Google Scholar 

  • Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Arneberg P, Skoping A, Read AF (1998) Parasite abundance, body size, life histories, and the energetic equivalence rule. Am Nat 151:497–513

    Article  PubMed  CAS  Google Scholar 

  • Bogacsyk BA, Krohn WB, Gibbs HC (1993) Factors affecting Parelaphostrongylus tenuis in white-tailed deer (Odocoileus virginianus) from Maine. J Wildl Dis 29:266–272

    Google Scholar 

  • Bonenfant C, Gaillard J-M, Coulson T, Festa-Bianchet M, Loison A, Garel M, Loe LE, Blanchard P, Pettorelli N, Owen-Smith N, Du Toit J, Duncan P (2009) Empirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41:313–357

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer, New York

    Google Scholar 

  • Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer. Behavior and ecology of two sexes. TUniversity of Chicago Press, Chicago

    Google Scholar 

  • Combes C (1995) Interactions durables. Ecologie et évolution du parasitisme. Masson, Paris

    Google Scholar 

  • Coop RL, Kyriazakis I (2001) Nutrition–parasite interaction. Vet Parasitol 84:187–204

    Article  Google Scholar 

  • Estrada-Peña A, Acevedo P, Ruiz-Fons F, Gortázar C, de la Fuente J (2008) Evidence of importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. PloS One 3:e2999. doi:10.1371/journal.pone.0002999

    Article  PubMed  Google Scholar 

  • Ezenwa VO (2003) Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int J Parasitol 34:535–542

    Article  Google Scholar 

  • Flerov KK (1952) Musk deer and deer, Fauna of the USSR, Mammals, I 2. USSR Academy of Sciences, Moscow (in Russia)

    Google Scholar 

  • Forbes M (2007) On sex differences in optimal immunity. Trends Ecol Evol 22:111–113

    Article  PubMed  Google Scholar 

  • Gaillard J-M, Delorme D, Boutin J-M, Van Laere G, Boisaubert B, Pradel R (1993) Roe deer survival patterns: a comparative analysis of contrasting populations. J Anim Ecol 62:778–791

    Article  Google Scholar 

  • Gaillard J-M, Delorme D, Boutin JM, Van Laere G, Boisaubert B (1996) Body mass of roe deer fawns during winter in 2 contrasting populations. J Wildl Manag 60:29–36

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Delorme D, Jorgenson J (2000) Body mass and individual fitness in female ungulates: bigger is not always better. Proc R Soc Lond B 267:471–477

    Article  CAS  Google Scholar 

  • Gaillard J-M, Duncan P, Delorme D, Van Laere G, Pettorelli N, Maillard D, Renaud G (2003) Effects of hurricane Lothar on the population dynamics of European roe deer. J Wildl Manag 67:767–773

    Article  Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Grenfell BT, Gulland FMD (1995) Introduction: ecological impact of parasitism on wildlife host populations. Parasitology 111:S3–S14

    Article  PubMed  Google Scholar 

  • Grenfell BT, Wilson K, Isham US, Boyd HEG, Dietz K (1995) Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode-ruminant interaction as a case study. Parasitology 111:S135–S151

    Article  PubMed  Google Scholar 

  • Hayward A, Wilson A, Pilkington J, Pemberton J, Kruuk L (2009) Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St. Kilda Soay sheep. Proc R Soc Lond B 276:3477–3485

    Article  Google Scholar 

  • Hewison M, Gaillard J-M (2001) Phenotype quality and senescence affect different components of reproductive output in roe deer. J Anim Ecol 70:600–608

    Article  Google Scholar 

  • Hewison M, Gaillard J-M, Angibault J-M, Van Laere G, Vincent JP (2002) The influence of density on post-weaning growth in roe deer Capreolus capreolus fawns. J Zool 257:303–309

    Article  Google Scholar 

  • Hines AM, Ezenwa VO, Cross P, Rogerson JD (2007) Effect of supplemental feeding on gastrointestinal parasite infection in elk (Cervus elaphus): preliminary observations. Vet Parasitol 148:350–355

    Article  PubMed  Google Scholar 

  • Holmstad PR, Hudson PJ, Skorping A (2005) The influence of a parasite community on the dynamics of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos 111:377–391

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert H (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Irvine RJ, Corbishley H, Pilkington JG, Albon SD (2006) Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus). Parasitology 133:465–475

    Article  PubMed  CAS  Google Scholar 

  • Kjellander P, Hewison M, Liberg O, Angibault J-M, Bideau E, Cargnelutti B (2004) Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L.): a comparison of two long-term studies. Oecologia 139:478–485

    Article  PubMed  CAS  Google Scholar 

  • Koski KG, Scott ME (2001) Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annu Rev Nutr 21:297–321

    Article  PubMed  CAS  Google Scholar 

  • Lambin X, Krebs CJ, Moss R, Stenseth NC, Yoccoz NG (1999) Population cycles and parasitism. Science 286:2425

    Article  Google Scholar 

  • Larsen M, Roepstorff A (1999) Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology 119:209–220

    Article  PubMed  Google Scholar 

  • Lutzelschwab CM, Fiel CA, Pedonesse SI, Najle R, Rodriguez E, Steffan PE, Fuse L, Iglesias L (2005) Arrested development of Ostertagia ostertagi: effect of the exposure of infective larvae to natural spring conditions of the Humid Pampa (Argentina). Vet Parasitol 127:253–262

    Article  PubMed  CAS  Google Scholar 

  • Margolis L, Esch GW, Holmes JC, Kuris AM, Schad JA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol 68:131–133

    Article  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B 363:321–339

    Article  Google Scholar 

  • May RM, Anderson RM (1978) Regulation and stability of host–parasite population interactions, II. Destabilizing process. J Anim Ecol 47:249–267

    Article  Google Scholar 

  • Morellet N, Gaillard J-M, Hewison M, Ballon P, Boscardin Y, Duncan P, Klein F, Maillard D (2007) Indicators of ecological change: new tools for managing populations of large herbivores. J Appl Ecol 44:634–643

    Article  Google Scholar 

  • Pettorelli N, Gaillard J-M, Van Laere G, Duncan P, Kjellander P, Liberg O, Delorme D, Maillard D (2002) Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. Proc R Soc Lond B 269:747–753

    Article  Google Scholar 

  • Pioz M, Loison A, Gauthier D, Gibert P, Jullien J-M, Artois M, Gilot-Fromont E (2008) Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia 155:691–704

    Article  PubMed  Google Scholar 

  • Raynaud JP (1970) Etude de l’efficacité d’une technique de coproscopie quantitative pour le diagnostic de routine et le contrôle des infestations parasitaires des bovins, ovins, caprins, équins et porcins. Ann Parasitol 45:321–342

    CAS  Google Scholar 

  • Redpath M, Mougeot F, Leckie FM, Elston DA, Hudson PJ (2006) Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecol Lett 9:410–418

    Article  PubMed  Google Scholar 

  • Santín-Durán M, Alunda JM, Hoberg EP, de la Fuente C (2004) Abomasal parasites in wild sympatric cervids, red deer, Cervus elaphus and fallow deer, Dama dama, from three localities across central and western Spain: relationship to host density and park management. J Parasitol 90:1378–1386

    Article  PubMed  Google Scholar 

  • Santín-Durán M, Alunda JM, Hoberg EP (2008) Age distribution and seasonal dynamics of abomasal helminths in wild red deer from central Spain. J Parasitol 94:1031–1037

    Article  PubMed  Google Scholar 

  • Schauber EM, Storm DJ, Nielsen CK (2007) Effects of joint space use and group membership contact rates among white-tailed deer. J Wildl Manag 71:155–163

    Article  Google Scholar 

  • Schemper M (1990) The explained variation in proportional hazards regression. Biometrika 77:216–218

    Article  Google Scholar 

  • Short RV, Baladan E (1994) The differences between the sexes. Cambridge University Press, London

    Google Scholar 

  • Slomke AM, Lankester MW, Peterson WJ (1995) Infrapopulation dynamics of Parelaphostrongylus tenuis in white-tailed deer. J Wildl Dis 31:125–135

    PubMed  CAS  Google Scholar 

  • Strandgaard M (1972) The roe deer (Capreolus capreolus) population at Kalo and the factors regulating its size. Dan Rev Game Biol 7:1–205

    Google Scholar 

  • Swinton J, Woolhouse MEJ, Bengon ME, Dobson AP, Ferroglio E, Grenfell BT, Guberti V, Hails RS, Heesterbeek JAP, Lavazza A, Roberts MG, White PJ, Wilson K (2002) Microparasite transmission and persistance. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 83–101

    Google Scholar 

  • Toigo C, Gaillard J-M, Van Laere G, Hewison M, Morellet N (2006) How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29:301–308

    Article  Google Scholar 

  • Tompkins DM, Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek JAP, Hudson PJ, Newborn D, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2002) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 45–62

    Google Scholar 

  • Vicente J, Hofle U, Garcia Fernandez-De-Mera I, Gortazar C (2007) The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia 152:655–666

    Article  PubMed  Google Scholar 

  • Yan J, Fine JP (2004) Estimating equations for association structures. Stat Med 23:859–880

    Article  PubMed  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Guillaume Gayet, Sophie Rossi, Sonia Saïd and Anne Viallefont for helpful discussions. The authors would like to thank the ONCFS technical staff (Office National de la Chasse et de la Faune Sauvage) of Trois-Fontaines and Marie-Eve Terrier for their help in providing samples. The authors would also like to thank Jérôme Depaquit and Monique Boutry for their technical help in fecal egg examinations. Financial support for this study was provided by ONCFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Gilot-Fromont.

Additional information

Communicated by Herwig Leirs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Body, G., Ferté, H., Gaillard, JM. et al. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer. Oecologia 167, 635–646 (2011). https://doi.org/10.1007/s00442-011-2018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2018-9

Keywords

Navigation