Skip to main content

Advertisement

Log in

δ15N constraints on long-term nitrogen balances in temperate forests

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:31-1–31-10

    Article  Google Scholar 

  • Aranibar JN, Macko SA, Anderson IC, Potgieter A, Sowry R, Shugart HH (2003) Nutrient cycling responses to fire frequency in the Kruger National Park (South Africa) indicated by stable isotopes. Isot Environ Healt Stud 39:141–158

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Binkley D, Cromack K, Fredriksen RL (1982) Nitrogen accretion and availability in some snowbrush ecosystems. For Sci 28:720–724

    Google Scholar 

  • Binkley D, Sollins P, McGill WB (1985) Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci Soc Am J 49:444–447

    Article  CAS  Google Scholar 

  • Binkley D, Cromack K Jr, Baker DD (1994) Nitrogen fixation by red alder: biology, rates, and controls. In: Hibbs DE, DeBell DS, Tarrant RF (eds) The biology and management of red alder. Oregon State University Press, Corvallis, pp 57–72

    Google Scholar 

  • Bormann BT, Tarrant RF, McClellan MH, Savage T (1989) Chemistry of rainwater and cloudwater at remote sites in Alaska and Oregon. J Environ Qual 18:149–152

    Article  CAS  Google Scholar 

  • Bormann BT, Homann PS, Darbyshire RL, Morrissette BA (2008) Intense forest wildfire sharply reduces soil C and N: the first direct evidence. Can J For Res 38:2771–2783

    Article  CAS  Google Scholar 

  • Brozek S (1990) Effect of soil changes caused by red alder on biomass and nutrient status of Douglas-fir seedlings. Can J For Res 20:1320–1325

    Article  Google Scholar 

  • Carlton CG (1988) The structure and dynamics of red alder communities in the central coast range of western Oregon. MS thesis, Oregon State University, Corvallis

  • Chapin FS, Walker LR, Fastie LC, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, London, pp 341–409

    Google Scholar 

  • Compton JE, Church MR, Larned ST, Hogsett WE (2003) Nitrogen export from forested watersheds in the Oregon Coast Range: role of N2-fixing red alder. Ecosystems 6:773–785

    Article  CAS  Google Scholar 

  • Compton JE, Hooker TD, Perakis SS (2007) Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10:1197–1208

    Article  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM et al (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448

    Article  Google Scholar 

  • Cromack K Jr, Miller RE, Helgerson OT, Smith RB, Anderson HW (1999) Soil carbon and nutrients in a coastal Oregon Douglas-fir plantation with red alder. Soil Sci Soc Am J 63:232–239

    Article  CAS  Google Scholar 

  • Dahlgren RA (1994) Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock. Nature 368:838–841

    Article  CAS  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographical model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • Debano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York

    Google Scholar 

  • Everett K, Hawkins BJ, Mitchell AK (2010) Douglas-fir seedling response to a range of ammonium:nitrate ratios in aeroponic culture. J Plant Nutr 33:1638–1657

    Article  CAS  Google Scholar 

  • Franklin WT (1970) Mineralogical and chemical characteristics of Western Oregon Andic Soils. PhD dissertation, Oregon State University, Corvallis

  • Franklin JF, Dyrness CT (1988) Natural vegetation of Oregon and Washington. Oregon State University Press, Corvallis

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gessel SP, Cole DW, Steinbrenner EC (1973) Nitrogen balances in forest ecosystems of the Pacific Northwest. Soil Biol Biochem 5:19–34

    Article  Google Scholar 

  • Giesen TW, Perakis SS, Cromack K Jr (2008) Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade Range of Oregon. Can J For Res 38:2455–2464

    Article  CAS  Google Scholar 

  • Grogan P, Bruns TD, Chapin FS (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–544

    Article  Google Scholar 

  • Heath B, Sollins P, Perry DA, Cromack K Jr (1988) Asymbiotic nitrogen fixation in litter from Pacific Northwest forests. Can J For Res 18:72–78

    Article  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems (Tansley Review No. 95). New Phytol 137:179–203

    Article  Google Scholar 

  • Homann PS, Sollins P, Chappell HN, Stangenberger AG (1995) Soil organic carbon in a mountainous, forested region: relation to site characteristics. Soil Sci Soc Am J 59:1468–1475

    Article  CAS  Google Scholar 

  • Homann PS, Remillard SM, Harmon ME, Bormann BT (2004) Carbon storage in coarse and fine fractions of Pacific Northwest old-growth forest soils. Soil Sci Soc Am J 68:2023–2030

    Article  CAS  Google Scholar 

  • Houlton BZ, Bai E (2009) Imprint of denitrifying bacterial on the global terrestrial biosphere. Proc Natl Acad Sci USA 106:21713–21716

    Article  PubMed  CAS  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750

    Article  PubMed  CAS  Google Scholar 

  • Hu FS, Finney B, Brubaker LB (2001) Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems 4:358–368

    Article  CAS  Google Scholar 

  • Huntington TG, Ryan DF, Hamburg SP (1988) Estimating soil nitrogen and carbon pools in a northern hardwood forest ecosystem. Sci Soc Am J 52:1162–1167

    Article  CAS  Google Scholar 

  • Isaac LA (1946) Fog drip and rain interception in coastal forests. USDA Forest Service research note no. 34. PNW Forest and Range Exp Station, Portland, Oregon, pp 15–16

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Johnson DW, Lindberg SE (1992) Atmospheric deposition and forest nutrient cycling. Springer, New York

    Book  Google Scholar 

  • Johnson DW, Susfalk RB, Caldwell TG, Murphy JR, Miller WW, Walker RF (2004) Fire effects on carbon and nitrogen budgets in forests. Water Air Soil Pollut Focus 4:263–275

    Article  CAS  Google Scholar 

  • Johnson DW, Murphy JD, Walker RF, Glass D, Miller WW (2007) Wildfire effects on forest carbon and nutrient budgets. Ecol Eng 31:183–192

    Article  Google Scholar 

  • Kreutzer K, Butterbach-Bahl K, Rennenberg H, Papen H (2009) The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Plant Biol 11:643–649

    Article  PubMed  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Long CJ, Whitlock C, Bartlein PJ, Millspaugh SH (1998) A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can J For Res 28:774–787

    Article  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S, Uri V, Augustin J (2008) Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Environ Res 13:231–241

    CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430

    Article  CAS  Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411

    Article  Google Scholar 

  • McNulty SG, Aber JD, Boone RD (1991) Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 14:13–29

    Article  CAS  Google Scholar 

  • Menge DNL, Levin SA, Hedin LO (2009) Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat 174:465–477

    Article  PubMed  Google Scholar 

  • Menge DNL, DeNoyer JL, Lichstein JW (2010) Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests. PLoS ONE 5(8):e12056

    Article  PubMed  Google Scholar 

  • Menge DNL, Baisden WT, Richardson SJ, Peltzer DA, Barbour MM (2011) Declining foliar and litter δ15N diverge from soil, epiphyte, and input δ15N along a 120,000 year temperate rainforest chronosequence. New Phytol. doi:10.1111/j.1469-8137.2010.03640.x

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle. Biogeochemistry 57:99–136

    Article  Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG (2002) Response of natural abundance of 15N in forest soils to high nitrate loss following clear-cutting. Can J For Res 32:1126–1136

    Article  CAS  Google Scholar 

  • Parfitt RL, Salt GJ, Hill LF (2002) Clear cutting reduces nitrate leaching in a pine plantation of high natural N status. For Ecol Manag 170:43–53

    Article  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–419

    Article  PubMed  Google Scholar 

  • Perakis SS, Kellogg CH (2007) Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: a case of enhanced N inputs? Plant Ecol 191:209–220

    Article  Google Scholar 

  • Perakis, SS, ER Sinkhorn (2011) Biogeochemistry of a temperate forest nitrogen gradient. Ecology (in press)

  • Perakis SS, Maguire DA, Bullen TD, Cromack K, Waring RH, Boyle JR (2006) Coupled nitrogen and calcium cycles in the forests of the Oregon Coast Range. Ecosystems 9:63–74

    Article  CAS  Google Scholar 

  • Peterson CE, Hazard JW (1990) Regional variation in growth response of coastal Douglas-fir to nitrogen fertilizer in the Pacific Northwest. For Sci 36:625–640

    Google Scholar 

  • Poage NJ, Weisberg PJ, Impara PC, Tappeiner JC, Sensenig TS (2009) Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon. Can J For Res 39:1518–1530

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Prescott CE, Chappell HN, Vesterdal L (2000) Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital. Ecology 81:1878–1886

    Article  Google Scholar 

  • Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Agren GA (2001) Resource optimization and symbiotic N fixation. Ecosystems 4:369–388

    Article  CAS  Google Scholar 

  • Remillard SM (1999) Soil carbon and nitrogen in old-growth forests in western Oregon and Washington. Forest Science. MS thesis, Oregon State University, Corvallis

  • Reneau SL, Dietrich WE (1991) Erosion rates in the southern Oregon Coast Range: evidence for an equilibrium between hillslope erosion and sediment yield. Earth Surf Process Landf 16:307–322

    Article  Google Scholar 

  • Saito L, Miller WW, Johnson DW, Qualls RG, Provencher L, Carroll E, Szameitat P (2007) Fire effects on stable isotopes in a Sierran forested watershed. J Environ Qual 36:91–100

    Article  PubMed  CAS  Google Scholar 

  • Scott EE, Perakis SS, Hibbs DE (2008) δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon Coast Range. For Sci 54:140–147

    Google Scholar 

  • Sickman JO, Leydecker A, Chang CCY, Kendall C, Melack JM, Lucero DM, Schimel JP (2003) Mechanisms underlying export of N from high-elevation catchments during season transitions. Biogeochemistry 62:1–32

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  PubMed  CAS  Google Scholar 

  • Sollins P, Grier CC, McCorison FM, Cromack K Jr, Fogel R, Fredriksen RL (1980) The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon. Ecol Mongr 50:261–285

    Article  Google Scholar 

  • Takebayashi Y, Koba K, Sasaki Y, Fang Y, Yoh M (2010) The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3 from NH4 + along the N leaching gradient. Rapid Commun Mass Spectrom 24:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Tripp LN, Bezdicek DF, Heilman PE (1979) Seasonal and diurnal patterns and rates of nitrogen fixation by young red alder. For Sci 25:371–381

    Google Scholar 

  • Vitousek PM, Hedin LO, Matson PA, Fownes JH, Neff J (1998) Within-system element cycles, input-output budgets, and nutrient limitation. In: Pace ML, Groffmann PM (eds) Successes, limitations, and frontiers in ecosystem science. Springer, New York, pp 432–451

    Chapter  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological N fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  CAS  Google Scholar 

  • Weiskittel AR, Maguire DA, Monserud RA, Johnson GP (2010) A hybrid model for intensively managed Douglas-fir plantations in the Pacific Northwest, USA. Eur J For Res 129:325–338

    Article  Google Scholar 

  • Zavitovski J, Newton M (1968) Ecological importance of snowbrush Ceanothus velutinus in the Oregon Cascades. Ecology 49:1113–1145

    Article  Google Scholar 

  • Zinke PJ, Stangenberger AG, Post WM, Emanuel WR, Olson JS (1998) Global organic soil carbon and nitrogen (Zinke et al.) data set. Available on-line: http://www.daac.ornl.gov from Oak Ridge National Lab Distributed Active Archive Center, Oak Ridge, Tennessee, USA

  • Zybach B (2003) The great fires: Indian burning and catastrophic forest fire patterns of the Oregon Coast Range, 1491–1951. Oregon State University, Corvallis

    Google Scholar 

Download references

Acknowledgments

We thank Melissa McCartney, Justin Brandt, and Chris Catricala for field and laboratory assistance, Bill Rugh for isotopic analyses, and Ben Houlton and Joe Craine for comments on the manuscript. This research was funded by the National Science Foundation Ecosystems Program via NSF DEB-0346837. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Perakis.

Additional information

Communicated by Jason Kaye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material: Appendix 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perakis, S.S., Sinkhorn, E.R. & Compton, J.E. δ15N constraints on long-term nitrogen balances in temperate forests. Oecologia 167, 793–807 (2011). https://doi.org/10.1007/s00442-011-2016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2016-y

Keywords

Navigation