Skip to main content
Log in

Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The measurement of insect visits to flowers is essential in basic and applied pollination ecology studies but often fraught with difficulty. Floral visitation is highly variable, and observational studies are limited in scope due to the considerable time necessary to acquire reliable data. The aim of our study was to investigate whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits would allow reconstruction of the visitor community and prediction of seed set for large numbers of plants. In 3 consecutive years, we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. We found that the UHCs washed from corollas were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species composition of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3–68% of flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two of the study species. Seed set of comfrey plants was positively correlated to overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects and can be used to predict seed set in pollen-limited plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Baker AM, Barrett SCH, Thompson JD (2000) Variation of pollen limitation in the early flowering mediterranean geophyte Narcissus assoanus (Amaryllidaceae). Oecologia 124:529–535

    Article  Google Scholar 

  • Bierzychudek P (1981) Pollinator limitation of plant reproductive effort. Am Nat 117:838–840

    Article  Google Scholar 

  • Bonavitacougourdan A, Theraulaz G, Bagneres AG, Roux M, Pratte M, Provost E, Clement JL (1991) Cuticular hydrocarbons, social-organization and ovarian development in a polistine wasp—Polistes dominulus Christ. Comp Biochem Physiol B Biochem Mol Biol 100:667–680

    Article  Google Scholar 

  • Bosch M, Waser NM (1999) Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae). Am J Bot 86:871–879

    Article  PubMed  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction—the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Butler CG, Fletcher DJ, Watler D (1969) Nest-entrance marking with pheromones by honeybee Apis mellifera L. and by a wasp Vespula vulgaris L. Anim Behav 17:142–147

    Article  Google Scholar 

  • Campbell DR (1985) Pollinator sharing and seed set of Stellaria pubera—competition for pollination. Ecology 66:544–553

    Article  Google Scholar 

  • Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed production in a natural plant-population. Ecology 74:1043–1051

    Article  Google Scholar 

  • Clarke KR, Gorley RN (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Corbet SA (1995) Insects, plants and succession—advantages of long-term set-aside. Agric Ecosyst Environ 53:201–217

    Article  Google Scholar 

  • Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond B 267:1149–1152

    Article  CAS  Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    Article  PubMed  CAS  Google Scholar 

  • de Jong TJ, Batenburg JC, Klinkhamer PGL (2005) Distance-dependent pollen limitation of seed set in some insect-pollinated dioecious plants. Acta Oecol Int J Ecol 28:331–335

    Article  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1213–1222

    Article  PubMed  Google Scholar 

  • Dudash MR, Fenster CB (1997) Multiyear study of pollen limitation and cost of reproduction in the iteroparous Silene virginica. Ecology 78:484–493

    Google Scholar 

  • Düll R, Kutzelnigg H (2005) Taschenlexikon der Pflanzen Deutschlands. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32:907–915

    Article  PubMed  CAS  Google Scholar 

  • Gawleta N, Zimmermann Y, Eltz T (2005) Repellent foraging scent recognition across bee families. Apidologie 36:325–330

    Article  Google Scholar 

  • Gilbert F, Azmeh S, Barnard C, Behnke J, Collins SA, Hurst J, Shuker D (2001) Individually recognizable scent marks on flowers made by a solitary bee. Anim Behav 61:217–229

    Article  PubMed  Google Scholar 

  • Ginzel MD, Hanks LM (2002) Evaluation of synthetic hydrocarbons for mark–recapture studies on the red milkweed beetle. J Chem Ecol 28:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Goodwin S, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443

    Article  PubMed  CAS  Google Scholar 

  • Goulson D, Stout JC, Hawson SA, Allen JA (1998) Floral display size in comfrey, Symphytum officinale L. (Boraginaceae): relationships with visitation by three bumblebee species and subsequent seed set. Oecologia 113:502–508

    Article  Google Scholar 

  • Goulson D, Stout JC, Langley J (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26(12):2897–2911

    Article  CAS  Google Scholar 

  • Goulson D, Chapman JW, Hughes W (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14(5):669–678

    Article  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  PubMed  CAS  Google Scholar 

  • Griffiths DW, Robertson GW, Shepherd T, Ramsay G (1999) Epicuticular waxes and volatiles from faba bean (Vicia faba) flowers. Phytochemistry 52:607–612

    Article  Google Scholar 

  • Griffiths DW, Robertson GW, Shepherd T, Birch ANE, Gordon SC, Woodford JAT (2000) Comparison of the composition of epicuticular wax from red raspberry (Rubus idaeus L.) and hawthorn (Crataegus monogyna Jacq.) flowers. Phytochemistry 55:111–116

    Article  PubMed  CAS  Google Scholar 

  • Hefetz A (1992) Individual scent marking of the nest entrance as a mechanism for nest recognition in Xylocopa pubescens (Hymenoptera, Anthophoridae). J Insect Behav 5:763–772

    Article  Google Scholar 

  • Hegi G (1966) Illustrierte Flora von Mitteleuropa. Paul Parey, Berlin

    Google Scholar 

  • Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebrasca Press, Lincoln, pp 179–226

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  PubMed  CAS  Google Scholar 

  • Jennersten O, Nilsson SG (1993) Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae). Oikos 68:283–292

    Article  Google Scholar 

  • Jiao YK, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    PubMed  CAS  Google Scholar 

  • Karron JD, Mitchell RJ, Bell JM (2006) Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am J Bot 93:1306–1312

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47:297–307

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kéry M, Matthies D, Spillmann HH (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30

    Article  Google Scholar 

  • Kunin WE (1993) Sex and the single mustard—population-density and pollinator behavior effects on seed-set. Ecology 74:2145–2160

    Article  Google Scholar 

  • Kunin WE (1997) Population size and density effects in pollination:pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 85:225–234

    Article  Google Scholar 

  • Lahav S, Soroker V, Hefetz A, Vander Meer RK (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249

    Article  CAS  Google Scholar 

  • Lamont BB, Klinkhamer PGL, Witkowski ETF (1993) Population fragmentation may reduce fertility to zero in Banksia goodii—a demonstration of the allee effect. Oecologia 94:446–450

    Article  Google Scholar 

  • Larson BMH, Barrett SCH (1999) The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). J Ecol 87:371–381

    Article  Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least square problems. Prentice Hall, New Jersey

    Google Scholar 

  • Liebig J, Peeters C, Oldham NJ, Markstadter C, Holldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci USA 97:4124–4131

    Article  PubMed  CAS  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle—origin, composition and function. Comp Biochem Physiol B Biochem Mol Biol 89:595–645

    Article  Google Scholar 

  • Louda SM (1982) Limitation of the recruitment of the shrub Haplopappus squarrosus (Asteraceae) by flower-feeding and seed-feeding insects. J Ecol 70:43–53

    Article  Google Scholar 

  • Martin SJ, Drijfhout FP (2009) Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J Chem Ecol 35:368–374

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Zhong WH, Drijfhout FP (2009) Long-term stability of hornet cuticular hydrocarbons facilitates chemotaxonomy using museum specimens. Biol J Linn Soc 96:732–737

    Article  Google Scholar 

  • Matsumura C, Washitani I (2000) Effects of population size and pollinator limitation on seed-set of Primula sieboldii populations in a fragmented landscape. Ecol Res 15:307–322

    Article  Google Scholar 

  • Molisch H (1929) Die Lebensdauer der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Oldham NJ, Billen J, Morgan ED (1994) On the similarity of the Dufour gland secretion and the cuticular hydrocarbons of some bumblebees. Physiol Entomol 19:115–123

    Article  CAS  Google Scholar 

  • Paige KN, Whitham TG (1987) Flexible life-history traits—shifts by Scarlet gilia in response to pollinator abundance. Ecology 68:1691–1695

    Article  Google Scholar 

  • Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (2007) Numerical Recipes: the Art of Scientific Computing, 3rd edn. Cambridge University Press, New York. ISBN 978-0-521-88068-8

  • Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant pollinator interactions. Curr Sci 65:273–277

    Google Scholar 

  • Real LA, Rathcke BJ (1991) Individual variation in nectar production and its effect on fitness in Kalmia latifolia. Ecology 72:149–155

    Article  Google Scholar 

  • Ruther J, Sieben S, Schricker B (2002) Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114

    Article  PubMed  CAS  Google Scholar 

  • Saleh N, Scott AG, Bryning GP, Chittka L (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interact 1:119–127

    Article  Google Scholar 

  • Schmitt U (1990) Hydrocarbons in tarsal glands of Bombus terrestris. Experientia 46:1080–1082

    Article  CAS  Google Scholar 

  • Sledge MF, Boscaro F, Turillazzi S (2001) Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav Ecol Sociobiol 49:401–409

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp). Behav Ecol Sociobiol 43(4–5):317–326

    Article  Google Scholar 

  • Tepedino VJ (1979) The importance of bees and other insects pollinators in maintaining floral species composition. Great Basin Naturalist Mem 3:39–150

    Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Williams IH (1996) Aspects of bee diversity and crop pollination in the European Union. Academic Press, London

    Google Scholar 

  • Wilms J, Eltz T (2008) Foraging scent marks of bumblebees: footprint cues rather than pheromone signals. Naturwissenschaften 95:149–153

    Article  PubMed  CAS  Google Scholar 

  • Witjes S, Eltz T (2009) Hydrocarbon footprints as a record of bumblebee flower visitation. J Chem Ecol 35:1320–1325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Klaus Lunau and all members of the Sensory Ecology Group for inspiring discussions and comments as well as the participants of the 2007 and 2008 Sensory Ecology course for help in surveying wild comfrey plants. We are very grateful to Manfred Ayasse and Andrea Weiß of the Department of Experimental Ecology in Ulm for providing reference samples. We would also like to thank Martin Lercher and Volker Aurich of the University of Düsseldorf for their open-mindedness and support regarding the mathematical reconstruction of the pollinator community of wild comfrey plants and, last but not least, Olaf Diestelhorst for the identification of individual solitary bees. This study was funded by the DFG grant EL 249/4 and the University of Düsseldorf. All experiments conducted comply with the “Guiding principles in the care and use of animals” and with current laws of the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Witjes.

Additional information

Communicated by Jeff Karron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witjes, S., Witsch, K. & Eltz, T. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers. Oecologia 166, 161–174 (2011). https://doi.org/10.1007/s00442-010-1824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1824-9

Keywords

Navigation