Skip to main content

Advertisement

Log in

Intraspecific variation in allelochemistry determines an invasive species’ impact on soil microbial communities

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Invasive species can benefit from altered species interactions in their new range, and by interfering with species interactions among native competitors. Since exotic invasions are generally studied at the species level, relatively little is known about intraspecific variation in the traits that determine an invader’s effect on native species. Alliaria petiolata is a widespread and aggressive invader of forest understories that succeeds in part by interfering with mutualistic interactions between native plants and soil fungi. Here, I show that the impact of A. petiolata on soil microbial communities varied among individuals due to variation in their allelochemical concentrations. The differential impacts translated into varied effects on native tree growth, partly because A. petiolata’s allelochemicals preferentially affected the most mutualistic fungal taxa. These results highlight the importance of considering the spatial and temporal variation in an invasive species’ impacts for understanding and managing the invasion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–2989

    Article  Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. Plos Biol 6:396–403

    Article  CAS  Google Scholar 

  • Bartomeus I, Vila M, Santamaria L (2008) Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155:761–770

    Article  PubMed  Google Scholar 

  • Batten KM, Scow KM, Espeland EK (2008) Soil microbial community associated with an invasive grass differentially impacts native plant performance. Microb Ecol 55:220–228

    Article  PubMed  Google Scholar 

  • Bending GD, Lincoln SD (2000) Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol Biochem 32:1261–1269

    Article  CAS  Google Scholar 

  • Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  • Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Giannino F, Mazzoleni S (2005) Negative plant–soil feedback and species coexistence. Oikos 111:311–321

    Article  Google Scholar 

  • Brabban AD, Edwards C (1995) The effects of glucosinolates and their hydrolysis products on microbial-growth. J Appl Bacteriol 79:171–177

    CAS  PubMed  Google Scholar 

  • Burke DJ (2008) Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest. Am J Bot 95:1416–1425

    Article  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    Article  PubMed  Google Scholar 

  • Dickie IA, Koide RT, Fayish AC (2001) Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol 151:257–264

    Article  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164

    Article  PubMed  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Haribal M, Renwick JAA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630

    Article  CAS  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Ishimoto H, Fukushi Y, Yoshida T, Tahara S (2000) Rhizopus and Fusarium are selected as dominant fungal genera in rhizospheres of Brassicaceae. J Chem Ecol 26:2387–2399

    Article  CAS  Google Scholar 

  • Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257

    Article  PubMed  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Lankau RA (2009) Genetic variation promotes long-term coexistence of Brassica nigra and its competitors. Am Nat 174:E40–E53

    Article  PubMed  Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009) Evolutionary limits ameliorate the negative impact of an invasive plant. Proc Natl Acad Sci USA 106:15362–15367

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG, Davis EA (2004) Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Sci Hortic 99:67–78

    Article  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  Google Scholar 

  • Macel M, Lawson CS, Mortimer SR, Smilauerova M, Bischoff A, Cremieux L, Dolezal J, Edwards AR, Lanta V, Bezemer TM, van der Putten WH, Igual JM, Rodriguez-Barrueco C, Muller-Scharer H, Steinger T (2007) Climate vs. soil factors in local adaptation of two common plant species. Ecology 88:424–433

    Article  PubMed  Google Scholar 

  • Madritch MD, Greene SL, Lindroth RL (2009) Genetic mosaics of ecosystem functioning across aspen-dominated landscapes. Oecologia 160:119–127

    Article  PubMed  Google Scholar 

  • Mangla S, Inderjit RM, Callaway (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J Ecol 96:58–67

    Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McCarthy BC, Hanson SL (1998) An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vazquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90

    Article  CAS  Google Scholar 

  • Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Meth 70:200–204

    Article  CAS  Google Scholar 

  • Mummey DL, Rillig MC (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. Fems Microbiol Ecol 64:260–270

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, and Wagner H (2009) vegan: Community Ecology Package. R package version 1.15-4. http://vegan.r-forge.r-project.org/

  • Renwick JAA, Zhang WQ, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152

    Article  Google Scholar 

  • Rodgers VL, Stinson KA, Finzi AC (2008) Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience 58:426–436

    Article  Google Scholar 

  • Schreiner RP, Koide RT (1993) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113

    Article  CAS  Google Scholar 

  • Schultz RC, Kormanik PP (1982) Vesicular–arbuscular mycorrhiza and soil fertility influence mineral concentrations in seedlings of eight hardwood species. Can J For Res 12:829–834

    Article  CAS  Google Scholar 

  • Schultz RC, Kormanik PP, Bryan WC (1981) Effects of fertilization and vesicular–arbuscular mycorrhizal inoculation on growth of hardwood seedlings. Soil Sci Soc Am J 45:961–965

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, Leroy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Smith BJ, Kirkegaard JA (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathol 51:585–593

    Article  CAS  Google Scholar 

  • St. Laurent A, Merwin I, Thies J (2008) Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant Soil 304:209–225

    Article  CAS  Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. Plos Biol 4:727–731

    Article  CAS  Google Scholar 

  • Tierens K, Thomma BPH, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    Article  CAS  PubMed  Google Scholar 

  • van Grunsven RHA, van der Putten WH, Bezemer TM, Tamis WLM, Berendse F, Veenendaal EM (2007) Reduced plant–soil feedback of plant species expanding their range as compared to natives. J Ecol 95:1050–1057

    Article  Google Scholar 

  • Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504

    Article  CAS  Google Scholar 

  • Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399–407

    Article  PubMed  Google Scholar 

  • Wolfe BE, Rodgers VL, Stinson KA, Pringle A (2008) The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J Ecol 96:777–783

    Article  Google Scholar 

Download references

Acknowledgments

I thank Emily Wheeler and Alison Bennett for comments on the manuscript and advice on molecular methods, Joanne Chee-Sanford and Angela Kent for access to equipment, and the University of Illinois Biotechnology Center for sample processing. This work was funded by USDA Grant # 2007-02894 to R.A.L. All experiments conducted complied with current American laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Lankau.

Additional information

Communicated by Jeremy Burdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankau, R.A. Intraspecific variation in allelochemistry determines an invasive species’ impact on soil microbial communities. Oecologia 165, 453–463 (2011). https://doi.org/10.1007/s00442-010-1736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1736-8

Keywords

Navigation