Skip to main content

Advertisement

Log in

Deuterium excess reveals diurnal sources of water vapor in forest air

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ2Hv and δ18Ov) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ2Hv and δ18Ov, with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2–6‰ for δ18O and 20–40‰ for δ2H at night. Using a box model, we simulated H2O isotope fluxes and showed that the low to high δ2Hv and δ18Ov profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation across the terrestrial landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angert A, Lee J-E, Yakir D (2008) Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean. Tellus 60B:674–684

    CAS  Google Scholar 

  • Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Article  Google Scholar 

  • Brooks JR, Barnard HR, Coulombe R, McDonnell JJ (2009) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosc 3:100–104

    Article  Google Scholar 

  • Brown D, Worden J, Noone D (2008) Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J Geophys Res 113:D15124. doi:10.1029/2007JD009676

    Article  Google Scholar 

  • Brunel JP, Simpson HJ, Herczeg AL, Whitehead R, Walker GR (1992) Stable isotope composition of water vapour as an indicator of transpiration fluxes from rice crops. Water Resour Res 28:1407–1416

    Article  CAS  Google Scholar 

  • Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60:3359–3360

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  CAS  PubMed  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiorigi E (ed) Stable Isotopes in oceanographic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global 3D model of δ18O in atmospheric CO2: 1. Validation of surface processes. J Geophys Res 108:4527. doi:10.1029/2002JD003153

    Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dongmann G, Nurnberg HW, Forstel H, Wagener K (1974) On the enrichment of H 182 O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082

    Article  CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG, Richards RA (1989) Carbon isotope discrimination and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy NA (eds) Stable isotopes in ecological research. Springer, New York, pp 21–46

    Google Scholar 

  • Flanagan LB, Ehleringer JR (1991) Effects of mild water stress and diurnal changes in temperature and humidity on the stable oxygen and hydrogen isotopic composition of leaf water in Cornus stolonifera L. Plant Physiol 97:298–305

    Article  CAS  PubMed  Google Scholar 

  • Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W (2008) Deuterium excess in precipitation of Alpine regions—moisture recycling. Isotopes Environ Health Stud 44:61–70

    Article  CAS  PubMed  Google Scholar 

  • Gat JR (2000) Atmospheric water balance—the isotopic perspective. Hydrol Process 14:1357–1369

    Article  Google Scholar 

  • Gat JR, Bowser CJ, Kendall C (1994) The contribution of evaporation from the Great Lakes to the continental atmosphere: estimate based on stable isotope data. Geophys Res Lett 21:557–560

    Article  Google Scholar 

  • Gat JR, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A (2003) Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern. Tellus 55(B):953–965

    Google Scholar 

  • Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun Mass Spectrom 23:2534–2542

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Lacis A, Rind D et al (1984) Climate sensitivity: analysis of feedback mechanisms. Climate processes and climate sensitivity. Geophys Monogr 29:130–163

    Google Scholar 

  • Harwood KG, Gillon JS, Roberts A, Griffiths H (1999) Determinants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy. Oecologia 119:109–119

    Article  Google Scholar 

  • Helliker BR, Roden JS, Cook C, Ehleringer JR (2002) A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor. Rapid Commun Mass Spectrom 16:929–932

    Article  CAS  PubMed  Google Scholar 

  • Henderson-Sellers A, Mcguffie K, Noone D, Irannejad P (2004) Using stable water isotopes to evaluate basin-scale simulations of surface water budgets. J Hydrometeorol 5:805–822

    Article  Google Scholar 

  • Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res 103:16871–16896

    Article  CAS  Google Scholar 

  • Joussaume S, Sadourny R, Jouzel J (1984) A general circulation model of water isotope cycles in the atmosphere. Nature 311:24–29

    Article  CAS  Google Scholar 

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  • Lai C-T, Ehleringer JR, Bond BJ, Paw U KT (2006) Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta O-18 of water vapour in Pacific Northwest coniferous forests. Plant Cell Environ 29:77–94

    Article  PubMed  Google Scholar 

  • Lai C-T, Ometto J, Berry JA, Martinelli LA, Domingues TF, Ehleringer JR (2008) Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation. Oecologia 157:197–210

    Article  PubMed  Google Scholar 

  • Lee J-E, Fung I (2007) “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol Process 22:1–8

    Article  Google Scholar 

  • Lee X, Sargent S, Smith R, Tanner B (2005) In situ measurement of the water vapor O-18/O-16 isotope ratio for atmospheric and ecological applications. J Atmos Oceanic Technol 22:555–565

    Article  Google Scholar 

  • Lee X, Smith R, Williams J (2006) Water vapour 18O/16O isotope ratio in surface air in New England, USA. Tellus 58(B):293–304

    Google Scholar 

  • Lee J-E, Fung I, DePaolo DJ, Henning CC (2007a) Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J Geophys Res 112:D16306. doi:10.1029/2006JD007657

    Article  Google Scholar 

  • Lee X, Kim K, Smith R (2007b) Temporal variations of the O-18/O-16 signal of the whole-canopy transpiration in a temperate forest. Global Biogeochem Cycles 21:Gb3013

    Article  Google Scholar 

  • Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochem Cycles 23:1002. doi:10.1029/2008GB003331

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene 18 et en deuterium entre l’eau et savapeur. J Chim Phys 58:1423–1436

    Google Scholar 

  • Merlivat L (1978) Molecular diffusivities of H 162 O, HD16O and H 182 O in gases. J Chem Phys 69:2864–2871

    Article  CAS  Google Scholar 

  • Moreira MZ, Sternberg LDL, Martinelli LA, Victoria RL, Barbosa EM, Bonates LCM, Nepstad DC (1997) Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biol 3:439–450

    Article  Google Scholar 

  • Peng H, Mayer B, Harris S, Krouse HR (2007) The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus 59(B):698–704

    Google Scholar 

  • Peters LI, Yakir D (2010) A rapid method for the sampling of atmospheric water vapour for isotopic analysis. Rapid Commun Mass Spectrom 24:103–108

    Article  CAS  PubMed  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic pattern in modern global precipitation, climate change in continental isotopic records. Geophys Monogr Am Geophys Union 78:1–36

    Google Scholar 

  • Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J Geophys Res 80:1133–1146

    Article  CAS  Google Scholar 

  • Wang L, Caylor K, Dragoni D (2009) On the calibration of continuous, high-precision δ18O and δ2H measurements using an off-axis integrated cavity output spectrometer. Rapid Commun Mass Spectrom 23:530–536

    Article  CAS  PubMed  Google Scholar 

  • Webster CR, Heymsfield AJ (2003) Water isotope ratios D/H, O-18/O-16, O-17/O-16 in and out of clouds map dehydration pathways. Science 302:1742–1745

    Article  CAS  PubMed  Google Scholar 

  • Welker JM (2000) Isotopic (d18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies. Hydrol Process 14:1449–1464

    Article  Google Scholar 

  • Welp LR, Lee X, Kim K, Griffis TJ, Billmark KA, Baker JM (2008) Delta O-18 of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ 31:1214–1228

    Article  CAS  PubMed  Google Scholar 

  • Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee X (2008) Continuous measurement of water vapor D/H and O-18/O-16 isotope ratios in the atmosphere. J Hydrol 349:489–500

    Article  Google Scholar 

  • Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532

    Article  CAS  PubMed  Google Scholar 

  • Yakir D (1998) Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In: Griffiths H (ed) Stable isotopes and the integration of biological, ecological and geochemical processes. Bios, Oxford, pp 147–168

    Google Scholar 

  • Yepez EA, Williams DG, Scott RL, Lin GH (2003) Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric For Meteorol 119:53–68

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their comments that improved the quality of this work. The authors thank Wind River Canopy Crane Research Facility for providing logistical support during our field work, AmeriFlux network for providing the meteorological data, and the Department of Atmospheric Science, University of Wyoming for providing the sounding data. We thank Craig Cook and Mike Lott from SIRFER, University of Utah for assistance with stable isotope analysis. C.-T. Lai was supported in part, through the Terrestrial Carbon Processes (TCP) program by the office of Science (BER), US Department of Energy under Grant No. DE-FG02-06ER64309, the National Institute for Climatic Change Research (NICCR) program, US Department of Energy under Grant No. DE-FC02-06ER64156, and US National Science Foundation Grant No. AGS-0956425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ta Lai.

Additional information

Communicated by Dan Yakir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, CT., Ehleringer, J.R. Deuterium excess reveals diurnal sources of water vapor in forest air. Oecologia 165, 213–223 (2011). https://doi.org/10.1007/s00442-010-1721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1721-2

Keywords

Navigation