Skip to main content
Log in

Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Sky conditions play an important role in the Earth’s climate system and CO2 uptake by plants. We used eddy covariance and meteorological data, including global and diffuse photosynthetic photon flux density (PPFD), recorded over the 2008 and 2009 growing season at two Sitka spruce [Picea sitchensis (Bong.) Carr.] forest sites in northern Britain, in order to establish relationships between physiological properties under diverse sky conditions, i.e. (1) sunny, (2) cloudy, and (3) overcast, and several canopy activity-related properties. These properties are: (1) response to PPFD, (2) photosynthetic light use efficiency, and (3) canopy stomatal conductance. We found that Sitka spruce forests utilise PPFD in a more efficient way when solar radiation is dominated by diffuse radiation. Furthermore, our results show that diffuse radiation enhances canopy stomatal conductance, an effect which may be the result of both blue light enrichment within the canopy and the reduction in vapour pressure deficit during cloudy and overcast weather. Diffuse radiation does not only influence short-term (hourly, daily, monthly) canopy activity but also long-term forest growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alton PB (2008) Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agric For Meteorol 148:1641–1653

    Article  Google Scholar 

  • Alton PB, North PR, Los SO (2007) The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob Chang Biol 13:776–787

    Article  Google Scholar 

  • Arain MA, Black TA, Barr AG, Jarvis PG, Massheder JM, Verseghy DL, Nesic Z (2002) Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Can J For Res 32:878–891

    Article  Google Scholar 

  • Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000) Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol 122:915–924

    Article  CAS  PubMed  Google Scholar 

  • Ball T, Smith K, Moncrieff JB (2007) Effect of stand age on greenhouse gas fluxes from a Sitka spruce [Picea sitchensis (Bong.) Carr.] chronosequence on a peaty gley soil. Glob Chang Biol 13:2128–2142

    Article  Google Scholar 

  • Blanken PD, Black TA (2004) The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada. Hydrol Process 18:1561–1578

    Article  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Bubier JL, Rock BN, Crill PM (1997) Spectral reflectance measurements of boreal wetland and forest mosses. J Geophys Res 102 (D24):29483-29494

    Google Scholar 

  • Calbo J, Gonzalez J-A, Pagegrave SD (2001) A method for sky-condition classification from ground-based solar radiation measurements. J Appl Meteorol 40:2193–2199

    Article  Google Scholar 

  • Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963

    Article  Google Scholar 

  • Causton DR, Dale MP (1990) The monomolecular and rectangular hyperbola as empirical-models of the response of photosynthetic rate to photon flux-density, with applications to 3 veronica species. Ann Bot 65:389–394

    Google Scholar 

  • Clement R (2004) Mass and energy exchange of a plantation forest in Scotland using micrometeorological methods. PhD dissertation, University of Edinburgh, pp 416

  • Clement R, Moncrieff JB, Jarvis PG (2003) Net carbon productivity of Sitka spruce forest in Scotland. Scott For 57:5–10

    Google Scholar 

  • Cowan IR (1968) Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Q J R Meteorol Soc 94:523–544

    Article  Google Scholar 

  • Dengel S, Aeby D, Grace J (2009) A relationship between galactic cosmic radiation and tree rings. New Phytol 184:545–551

    Article  PubMed  Google Scholar 

  • Dixon M, Grace J (1984) Effect of wind on the transpiration of young trees. Ann Bot 53:811–819

    Google Scholar 

  • Duchon CE, O’Malley MS (1999) Estimating cloud type from pyranometer observations. J Appl Meteorol 38:132–141

    Article  Google Scholar 

  • Falconer RE (1965) A simple method for obtaining a continuous record of presence and type of clouds in sky during day. Pure Appl Geophys 60:236–244

    Article  Google Scholar 

  • Farquhar GD, Roderick ML (2003) Atmospheric science: Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998

    Article  CAS  PubMed  Google Scholar 

  • Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997) Physiological responses of a black spruce forest to weather. J Geophys Res 102:28987–28996

    Article  CAS  Google Scholar 

  • Grace J, Malcolm DC, Bradbury IK (1975) The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. J Appl Ecol 12:931–940

    Article  Google Scholar 

  • Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999) Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. J Geophys Res 104(D24):31421–31434

    Article  CAS  Google Scholar 

  • Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:4050

    Article  Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  Google Scholar 

  • Haslwanter A, Hammerle A, Wohlfahrt G (2009) Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric For Meteorol 149:291–302

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B Biol Sci 273:593–610

    Article  CAS  Google Scholar 

  • Jarvis PG (1994) Capture of carbon dioxide by coniferous forest. In: Monteith JL, Scott RK, Unsworth MH (eds) Resource capture by crops. Nottingham University Press, Nottingham

    Google Scholar 

  • Jarvis PG (1995) The role of temperate trees and forests in CO2 fixation. Plant Ecol 121:157–174

    Article  Google Scholar 

  • Karlsson PE (1986) Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. Physiol Plant 66:207–210

    Article  Google Scholar 

  • Kaufmann MR (1976) Stomatal response of engelmann spruce to humidity, light, and water stress. Plant Physiol 57:898–901

    Article  CAS  PubMed  Google Scholar 

  • Knohl A, Baldocchi DD (2008) Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J Geophys Res 113:G02023. doi:10.1029/2007JG000663

    Article  Google Scholar 

  • Košvancová M, Urban O, Sprtova M, Hrstka M, Kalina J, Tomaskova I, Špunda V, Marek MV (2009a) Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Sci 177(2):123–130. doi:10.1016/j.plantsci.2009.04.005

    Article  Google Scholar 

  • Košvancová-Zitová M, Urban O, Navrátil M, Špunda V, Robson TM, Marek MV (2009b) Blue radiation stimulates photosynthetic induction in Fagus sylvatica L. Photosynthetica 47(3):388–398. doi:10.1007/s11099-009-0060-1

    Article  Google Scholar 

  • Kuiper PJC (1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol 39:952–955

    Article  CAS  PubMed  Google Scholar 

  • Law BE, Falge E et al (2002) Environmental controls over carbon dioxide and water vapour exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Letts MG, Lafleur PM, Roulet NT (2005) On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem. Ecoscience 12:53–59

    Article  Google Scholar 

  • Mansfield TA, Meidner H (1966) Stomatal opening in light of different wavelengths: effects of blue light independent of carbon dioxide concentration. J Exp Bot 17:510–521

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Min Q (2005) Impacts of aerosols and clouds on forest-atmosphere carbon exchange. J Geophys Res 110

  • Moncrieff JB, Massheder JM et al (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:589–611

    Article  Google Scholar 

  • Morison JIL, Jarvis PG (1983) Direct and indirect effects of light on stomata. I. In Scots pine and Sitka spruce. Plant Cell Environ 6:95–101

    Article  Google Scholar 

  • Muneer T, Kubie J, Wood J (2007) Evaluation of a new photodiode sensor for measuring global and diffuse irradiance, and sunshine duration. ASME J Sol Energy Eng 125(1):1–6

    Google Scholar 

  • Neilson RE, Jarvis PG (1975) Photosynthesis in sitka Spruce [Picea-Sitchensis (Bong) Carr]. 6. Response of stomata to temperature. J Appl Ecol 12:879–891

    Article  CAS  Google Scholar 

  • Pellatt MG, Mathewes RW (1997) Holocene tree line and climate change on the Queen Charlotte Islands, Canada. Quat Res 48:88–99

    Article  Google Scholar 

  • Portis AR, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604. doi:10.1093/jxb/erm240

    Article  CAS  PubMed  Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    Google Scholar 

  • Raupach MR (1995) Vegetation atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agric For Meteorol 73:151–179

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M et al (2006) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439. doi:10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Roderick M, Farquhar G, Berry S, Noble I (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1–53

    Article  Google Scholar 

  • Seginer I (1974) Aerodynamic roughness of vegetated surfaces. Bound Layer Meteorol 5:383–393

    Article  Google Scholar 

  • Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forests. Philos Trans R Soc Lond Ser B B324:324–394

    Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang J-Y, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141(1):2–18. doi:10.1016/j.agrformet.2006.09.001

    Article  Google Scholar 

  • Taylor AH (1990) Disturbance and persistence of Sitka spruce (Picea sitchensis (Bong) Carr.) in coastal forests of the Pacific Northwest, North America. J Biogeogr 17:47–58

    Article  Google Scholar 

  • Thom A (1975) Momentum, mass and heat exchange of plant communities. In: Monteith JL (ed) Vegetation and the atmosphere, vol 1. Academic Press, New York, pp 57–110

  • Urban O, Janous D, Acosta M et al (2007) Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob Chang Biol 13:157–168

    Article  Google Scholar 

  • van der Tol C, Gash JHC, Grant SJ, McNeil DD, Robinson M (2003) Average wet canopy evaporation for a Sitka spruce forest derived using eddy correlation-energy balance technique. J Hydrol 276:12–19

    Article  Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific Northwest. Science 204:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Watts WR, Neilson RE, Jarvis PG (1976) Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]: VII. Measurements of stomatal conductance and 14CO2 uptake in a forest canopy. J Appl Ecol 13:623–638

    Article  Google Scholar 

  • Wood J, Muneer T, Kubie J (2003) Evaluation of a new photodiode sensor for measuring global and diffuse irradiance, and sunshine duration. J Sol Energy Eng 125:43–48

    Article  Google Scholar 

  • Zeiger E (1983) The biology of stomatal guard-cells. Annu Rev Plant Physiol 34:441–475

    Article  CAS  Google Scholar 

  • Zeiger E (1990) Light perception in guard cells. Plant Cell Environ 13:739–744

    Article  Google Scholar 

  • Zeiger E, Field C (1982) Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf: blue light and par-dependent photosystems in guard cells. Plant Physiol 70:370–375

    Article  CAS  PubMed  Google Scholar 

  • Zerva A, Ball T, Smith KA, Mencuccini M (2005) Soil carbon dynamics in a Sitka spruce [Picea sitchensis (Bong.) Carr.] chronosequence on a peaty gley. For Ecol Manage 205:227–240

    Article  Google Scholar 

Download references

Acknowledgments

This work forms a part of the research supported by the European Commission (CarboEurope IP-project) and supported by a Torrance Research Scholarship, University of Edinburgh. The authors would like to thank Dr. Robert Clement and Prof. J. B. Moncrieff for providing Griffin flux data and the Natural Environmental Research Council Field Spectroscopy Facility for the loan of the paired spectrometer, as part of an approved project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Dengel.

Additional information

Communicated by Nina Buchmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dengel, S., Grace, J. Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions. Oecologia 164, 797–808 (2010). https://doi.org/10.1007/s00442-010-1687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1687-0

Keywords

Navigation