Skip to main content
Log in

Trees as templates for tropical litter arthropod diversity

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance–extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agosti D, Majer LE, Schultz TR (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Anderson JM (1975) The enigma of soil animal species diversity. In: Progress in soil zoology. Proc of the 5th Int Coll Soil Zool, pp 51–58

  • Anderson JM (1978) Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341–348

    Article  Google Scholar 

  • André HM, Noti M-I, Lebrun P (1994) The soil fauna: the other last biotic frontier. Biodivers Conserv 3:45–56

    Article  Google Scholar 

  • André HM, Ducarme X, Lebrun P (2002) Soil biodiversity: myth, reality or conning? Oikos 96:3–24

    Article  Google Scholar 

  • Armbrecht I, Perfecto I, Vandermeer J (2004) Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science 304:284–286

    Article  CAS  PubMed  Google Scholar 

  • Ayres E, Dromph KM, Bardgett RD (2006) Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biol Biochem 38:183–186

    Article  CAS  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bardgett RD, Cook R (1998) Functional aspects of soil animal diversity in agricultural grasslands. Appl Soil Ecol 10:263–276

    Article  Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (eds) (2005a) Biological diversity and function in soils. Ecological reviews. Cambridge University Press, Cambridge

    Google Scholar 

  • Bardgett RD, Yeates GW, Anderson JM (2005b) Patterns and determinants of soil biological diversity. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Ecological reviews. Cambridge University Press, Cambridge, pp 100–118

    Chapter  Google Scholar 

  • Basset Y (1992) Host specificity of arboreal and free-living insect herbivores in rain forests. Biol J Linn Soc 47:115–152

    Article  Google Scholar 

  • Brühl CA, Gunsalem G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Fromicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285–297

    Article  Google Scholar 

  • Burghouts T, Ernsting G, Korthals G, de Vries T (1992) Litterfall, leaf litter decomposition and litter invertebrates in primary and selectively logged dipterocarp forest in Sabah, Malaysia. Philos Trans R Soc Lond B 335:407–416

    Article  Google Scholar 

  • Chapman MG, Underwood AJ (1999) Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Mar Ecol Prog Ser 180:257–265

    Article  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, Oxford

    Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Colwell RK (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. User’s Persistent URL: http://purl.oclc.org/estimates

  • Dominy NJ, Lucas PW, Wright SJ (2003) Mechanics and chemistry of rain forest leaves: canopy and understorey compared. J Exp Bot 54:2007–2014

    Article  CAS  PubMed  Google Scholar 

  • Donoso DA, Ramón G (2009) Composition of a high diversity leaf litter ant community (Hymenoptera: Formicidae) from an Ecuadorian pre-montane rainforest. Ann Soc Entomol Fr (ns) 45:487–499

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Elger A, Lemoine DG, Fenner M, Hanley ME (2009) Plant ontogeny and chemical defence: older seedlings are better defended. Oikos 118:767–773

    Article  CAS  Google Scholar 

  • Erwin TL (1982) Tropical forests, their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14

    Article  Google Scholar 

  • Fromm H, Winter K, Filser J, Hantschel R, Beese F (1993) The influence of soil type and cultivation system on the spatial distributions of the soil fauna and microorganisms and their interactions. Geoderma 60:109–118

    Article  Google Scholar 

  • Giller PS (1996) The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodivers Conserv 5:135–168

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forest. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–1132

    Article  Google Scholar 

  • Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23

    Article  Google Scholar 

  • Hubbell SP (2004) Two decades of research on the BCI Forest Dynamics Plot. In: Losos ECJ, Leigh EG (eds) Tropical forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press, Chicago, pp 8–30

    Google Scholar 

  • Hubbell SP, Foster RB (1986) Biology, chance, and history and the structure of tropical rain forest tree communities. In: Diamond J, Case T (eds) Community ecology. Harper and Row, New York, pp 314–329

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Illig J, Langel R, Norton RA, Scheu S, Maraun M (2005) Where are the decomposers? Uncovering the soil food web of a tropical montane rain forest in southern Ecuador using stable isotopes (15 N). J Trop Ecol 21:589–593

    Article  Google Scholar 

  • Jermy T, Szentesi A (2003) Evolutionary aspects of host plant specialisation—a study on bruchids (Coleoptera: Bruchidae). Oikos 101:196–204

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Agriculture, ecosystems and environment. Appl Soil Ecol 32:153–164

    Article  Google Scholar 

  • Kaspari ME (1993) Removal of seeds from Neotropical frugivore droppings: ant responses to seed number. Oecologia 95:81–88

    Article  Google Scholar 

  • Kaspari ME (1996) Worker size and seed size selection by harvester ants in a Neotropical forest. Oecologia 105:397–404

    Article  Google Scholar 

  • Kaspari ME, Yanoviak SP (2008) The biogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesis. Funct Ecol 22:919–923

    Article  Google Scholar 

  • Kaspari ME, Yuan M, Alonso L (2003) Spatial grain and gradients of ant species richness. Am Nat 161:459–477

    Article  PubMed  Google Scholar 

  • Leigh EG Jr, Loo de Lao S, Condit RS, Hubbell SP, Foster RB, Perez R (2004) Barro Colorado island forest dynamics plot, Panama. In: Losos ECJ, Leigh EG Jr (eds) Tropical forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press, Chicago, pp 451–463

    Google Scholar 

  • Lewinsohn TM, Roslin T (2008) Four ways towards tropical herbivore megadiversity. Ecol Lett 11:398–416

    Article  PubMed  Google Scholar 

  • Longino JT, Nadkarni NM (1990) A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a Neotropical montane forest. Psyche 97:81–93

    Article  Google Scholar 

  • MacArthur RH, Levins R (1964) Competition, habitat selection, and character displacement in a patchy environment. Proc Nat Acad Sci USA 51:1207–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maraun M, Schatz H, Stefan S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216

    Article  Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap, Cambridge, pp 81–120

    Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Medianero E, Castaño-Meneses G, Tishechkin A, Basset Y, Barrios H, Ødegaard F, Cline AR, Bail J (2007) Influence of local illumination and plant composition on the spatial and seasonal distribution of litter-dwelling arthropods in a tropical forest. Pedobiologia 51:131–145

    Article  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–439

    Article  Google Scholar 

  • Novotny V, Basset Y (2005) Host specificity of insect herbivores in tropical forests. Proc R Soc Lond B 272:1083–1090

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Novotny V, Miller SE, Hulcr J, Drew RAI, Basset Y, Janda M, Setliff GP, Darrow K, Stewart AJA, Auga J, Isua B, Molem K, Manumbor M, Tamtiai E, Mogia M, Weiblen GD (2007) Low beta diversity of herbivorous insects in tropical forests. Nature 448:692–695

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, O’Hara RB (2005) Vegan: Community Ecology Package. R Package version 1.6-10

  • OSU (2009) Soil, water and forage analytical laboratory. Available at: http://www.soiltesting.okstate.edu/

  • Powers JS, Kalicin MH, Newman ME (2004) Tree species do not influence soil chemistry in a species-rich Costa Rica rain forest. J Trop Ecol 20:587–590

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rosenzweig KL (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Scheu S (2005) Linkage between tree diversity, soil fauna and ecosystem processes. In: Scherer-Lorenzen M, Körner Ch, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 211–233

    Chapter  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer communities. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223–264

    Chapter  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Ecol Syst 29:25–46

    Google Scholar 

  • Setälä H, Berg M, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Hopkins DW, Usher M (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 236–249

    Chapter  Google Scholar 

  • St. John MG, Wall DH, Behan-Pelletier VM (2006) Does plant species co-occurrence influence soil mite diversity? Ecology 87:625–633

    Article  PubMed  Google Scholar 

  • Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35:321–337

    Article  Google Scholar 

  • Stork NE, Grimbacher PS (2006) Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc Lond B 273:1969–1975

    Article  Google Scholar 

  • Swift MJ (1976) Species diversity and the structure of microbial communities in terrestrial habitats. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford, pp 185–222

    Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. The University of Chicago Press, Chicago, pp 11–25

    Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Article  PubMed  Google Scholar 

  • Usher MB (1976) Aggregation responses of soil arthropods in relation to soil environment. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford, pp 61–94

    Google Scholar 

  • van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K, Gillis M, Declerk S, de Meester L, Vyverman W (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. Microbial Ecol 53:205–220

    Article  Google Scholar 

  • Walter D, Proctor HC (1999) Mites: ecology, evolution and behavior. University of New South Wales Press, Sydney

    Google Scholar 

  • Wardle DA (2005) How plant communities influence decomposer communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Ecological reviews. Cambridge University Press, Cambridge, pp 119–138

    Chapter  Google Scholar 

  • Williams LJ, Bunyavejchewin S, Baker PJ (2008) Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues. Oecologia 155:571–582

    Article  PubMed  Google Scholar 

  • Wilson EO (2005) Oribatid mite predation by small ants of the genus Pheidole. Insect Soc 52:263–265

    Article  Google Scholar 

  • Yanoviak S, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259–266

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Vitt, M. Yuan, R. Broughton, Y. Luo, L. Weider, and G. Wellborn for serving in our graduate committee. We thank S. Hubbel, R. Foster, R. Condit, and J. Wright for allowing access to the CTFS plot. We thank O. Dangles, O. Lewis, C. Riehl, J. Shik, L. Williams, and the ZEEB Journal Club for comments in this manuscript. We thank professor H. Schatz for mite identification. An Adams scholarship supported D.A.D. during the writing of this paper. This research was supported by NSF Grant No. 0212386 to M.K. O. Acevedo and H. Castañeda provided logistic support at BCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Donoso.

Additional information

Communicated by Matthias Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donoso, D.A., Johnston, M.K. & Kaspari, M. Trees as templates for tropical litter arthropod diversity. Oecologia 164, 201–211 (2010). https://doi.org/10.1007/s00442-010-1607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1607-3

Keywords

Navigation