Skip to main content
Log in

Ectoparasites, uropygial glands and hatching success in birds

  • Physiological ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The uropygial gland of birds secretes wax that is applied to the plumage, where the secretions are hypothesized to eliminate fungi and bacteria, thereby potentially providing important benefits in terms of plumage maintenance. We analyzed variation in size of the uropygial gland in 212 species of birds to determine the function and the ecological correlates of variation in gland size. Bird species with larger uropygial glands had more genera of chewing lice of the sub-order Amblycera, but not of the sub-order Ischnocera, and more feather mites. There was a fitness advantage associated with relatively large uropygial glands because such species had higher hatching success. These findings are consistent with the hypothesis that the uropygial gland functions to manage the community of microorganisms, and that certain taxa of chewing lice have diverged as a consequence of these defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. Saunders, Philadelphia

    Google Scholar 

  • Baggott GK, Graeme-Cook K (2002) Microbiology of natural incubation. In: Deeming DC (ed) Avian incubation behaviour, environment and evolution). Oxford University Press, Oxford, pp 179–191

    Google Scholar 

  • Banet M (1986) Fever in mammals: is it beneficial? Yale J Biol Med 59:117–124

    CAS  PubMed  Google Scholar 

  • Belliure J, Sorci G, Møller AP, Clobert J (2000) Dispersal distances predict subspecies richness in birds. J Evol Biol 13:480–487

    Article  Google Scholar 

  • Blatteis CM (1986) Fever. is it beneficial? Yale J Biol Med 59:107–116

    CAS  PubMed  Google Scholar 

  • Bridge ES, Jones AW, Baker AJ (2005) A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol Phylogenet Ecol 35:459–469

    Article  CAS  Google Scholar 

  • Brook I (1999) Bacterial interference. Crit Rev Microbiol 25:155–172

    Article  CAS  PubMed  Google Scholar 

  • Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:681–686

    Article  Google Scholar 

  • Carroll MC, Prodeus AP (1998) Linkages of innate and adaptive immunity. Curr Opin Immunol 10:36–40

    Article  CAS  PubMed  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodríguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic microorganisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B 270:2233–2240

    Article  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodríguez RA, Arendt WJ (2005) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav Ecol 16:30–36

    Article  Google Scholar 

  • Cramp S, Perrins CM (ed) (1977–1994) The birds of the Western Palearctic. Vols 1–9. Oxford University Press, Oxford

  • del Hoyo J, Elliott A, Sagartal J (eds) (1992–2008) Handbook of the birds of the world. Lynx, Barcelona

  • Donne-Goussé C, Laudet V, Hänni C (2002) A molecular phylogeny of Anseriiformes based on mitochondrial DNA analysis. Mol Phylogenet Evol 23:339–356

    Article  PubMed  Google Scholar 

  • Elder WH (1954) The oil gland of birds. Wilson Bull 66:6–31

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fineblum WL, Rausher MD (1995) Trade-off between resistance and tolerance to herbivore damage in a morning glory. Nature 377:517–520

    Article  CAS  Google Scholar 

  • Galván I, Barba E, Piculo R, Cantó JL, Cortés V, Monrós JS, Atiénzar F, Proctor H (2008) Feather mites and birds: an interaction mediated by uropygial gland size? J Evol Biol 21:133–145

    PubMed  Google Scholar 

  • Garamszegi LZ, Erritzøe J, Møller AP (2007) Feeding innovations and immune defense in birds. Biol J Linn Soc 90:441–455

    Article  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Glick B (1983) Bursa of Fabricius. In: Farner DS, King JR (eds) Avian biology, vol 7. Academic Press, New York, pp 443–500

    Google Scholar 

  • Glick B (1994) The bursa of Fabricius: the evolution of a discovery. Poult Sci 73:979–983

    CAS  PubMed  Google Scholar 

  • Griffiths CS, Barrowclough GF, Groth JG, Mertz LA (2007) Phylogeny, diversity, and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. J Avian Biol 38:587–602

    Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleton CJ, Marks BD, Miglia KJ, Moore WA, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Hackstein JHP, van Alen TA (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572

    Article  Google Scholar 

  • Hackstein JHP, Langer P, Rosenberg J (1996) Genetic and evolutionary constraints for the symbiosis between animals and methanogenic bacteria. Environ Monit Assess 42:39–56

    Article  CAS  Google Scholar 

  • Hart BJ (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic Press, New York, pp 199–324

    Google Scholar 

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4

    Article  PubMed  Google Scholar 

  • JMP (2000) JMP. SAS Institute, Cary

  • Johnson KP, Clayton DH (2000) Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Mol Phylogenet Evol 14:141–151

    Article  CAS  PubMed  Google Scholar 

  • Johnston DW (1988) A morphological atlas of the avian uropygial gland. Bull Br Mus Nat Hist (Zool) 54:199–259

    Google Scholar 

  • Jones KE, Purvis A (1997) An optimum body size for mammals? Comparative evidence from bats. Funct Ecol 11:751–756

    Article  Google Scholar 

  • Jønsson KA, Fjeldså J (2006) A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool Scripta 35:149–186

    Article  Google Scholar 

  • Kennedy RJ (1971) Preen gland weights. Ibis 113:369–372

    Article  Google Scholar 

  • Kraaijeveld AR, van Alphen JM (1995) Foraging behavior and encapsulation ability of Drosophila melanogaster larvae: correlated polymorphisms? (Diptera: Drosophilidae). J Insect Behav 8:305–314

    Article  Google Scholar 

  • Krüger O, Sorenson MD, Davies NB (2009) Does coevolution promote species richness in parasitic cuckoos? Proc R Soc Lond B (in press)

  • Krykanov A (1982) Lysozyme in egg white as an aid in evaluating egg fertility. Ptitsevodstvo 6:24–25

    Google Scholar 

  • Kudo S (2000) Enzymes responsible for the bactericidal effect in extracts of vitelline and fertilisation envelopes of rainbow trout eggs. Zygote 8:257–265

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Wikelski M, Robinson WD, Robinson TR, Klasing KC (2008) Constitutive immune defences correlate with life-history variables in tropical birds. J Anim Ecol 77:356–363

    Article  CAS  PubMed  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Develop Comp Immunol 29:275–286

    Article  CAS  Google Scholar 

  • McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Microrev Cell Microbiol 3:1–11

    Article  CAS  Google Scholar 

  • Melek OI (1977) The lysozyme content of egg protein in fowls and embryo mortality. Sbornik Nauk Mosk Vet Akad 92:71–74

    Google Scholar 

  • Møller AP, Haussy C (2007) Fitness consequences of variation in natural antibodies and complement in the barn swallow Hirundo rustica. Funct Ecol 21:363–371

    Article  Google Scholar 

  • Møller AP, Rózsa L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142:169–176

    Article  PubMed  Google Scholar 

  • Møller AP, Christe P, Garamszegi LZ (2005a) Coevolutionary arms races: increased host immune defense promotes specialization by avian fleas. J Evol Biol 18:46–59

    Article  PubMed  Google Scholar 

  • Møller AP, Erritzøe J, Garamszegi LZ (2005b) Coevolution between brain size and immunity in birds: implications for brain size evolution. J Evol Biol 18:223–237

    Article  PubMed  Google Scholar 

  • Møller AP, Garamszegi LZ, Spottiswoode C (2008) Genetic similarity, distribution range and sexual selection. J Evol Biol 21:213–225

    Article  PubMed  Google Scholar 

  • Montalti D, Salibián A (2000) Uropygial gland size and avian habitat. Ornitol Neotrop 11:297–306

    Google Scholar 

  • Montalti D, Gutiérrez AM, Reboredo G, Salibián A (2005) The chemical composition of the uropygial gland secretion of rock dove Columba livia. Comp Biochem Physiol A 140:275–279

    Article  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, Oxford

    Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871

    Article  CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinklernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159

    Article  CAS  PubMed  Google Scholar 

  • Oka N, Okuyama M (2000) Nutritional status of dead oiled rhinoceros auklets (Cerorhinca monocerata) in the Southern Japanese Sea. Mar Pollut Bull 40:340–347

    Article  CAS  Google Scholar 

  • Price PD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (eds) The chewing lice: world checklist and biological overview. INHS special publication 24. Illinois Natural History Survey, Illinois

    Google Scholar 

  • Proctor H (2003) Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annu Rev Entomol 48:185–209

    Article  CAS  PubMed  Google Scholar 

  • Prusinowska I, Jankowski J (1996) The relationship between serum lysozyme activity and reproductive performance in turkeys. J Anim Feed Sci 5:395–401

    Google Scholar 

  • Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC). Comp Appl Biosci 11:247–251

    CAS  PubMed  Google Scholar 

  • Reid RR, Prodeus AP, Kahn W, Hsu T, Rosen FS, Carroll MC (1997) Endotoxin shock in antibody-deficient mice: unravelling the role of natural antibody and complement in clearance of lipopolysaccharide. J Immunol 159:970–975

    CAS  PubMed  Google Scholar 

  • Rékási J, Kiss JB (1977) Beiträge zur Kenntnis der Federlinge (Mallophaga) der Vögel Nord-Dobrudschas (Rumänien). Parasitol Hung 10:96–116

    Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocines: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Saino N, Martinelli R, Dall’Ara P, Møller AP (2002) Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow Hirundo rustica. J Evol Biol 15:735–743

    Article  CAS  Google Scholar 

  • Saino N, Martinelli R, Biard C, Gil D, Spottiswoode C, Rubolini D, Surai P, Møller AP (2007) Maternal immune factors and the evolution of secondary sexual characters. Behav Ecol 18:513–520

    Article  Google Scholar 

  • Sandilands V, Savory J, Powell K (2004) Preen gland function in layer fowls: factors affecting morphology and feather lipid levels. Comp Biochem Physiol A 137:217–225

    Article  Google Scholar 

  • Sato Y, Watanabe K (1976) Lysozyme in hen blood serum. Poultry Sci 55:1749–1756

    CAS  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds, a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Sibley CG, Monroe BL Jr (1990) Distribution and taxonomy of birds of the World. Yale University Press, London

    Google Scholar 

  • Soler JJ, Soler M, Pérez-Contreras T, Aragon S, Møller AP (1999) Antagonistic anti-parasite defenses: nest defense and egg rejection in the magpie host of the great spotted cuckoo. Behav Ecol 10:707–713

    Article  Google Scholar 

  • Soler JJ, Martin-Vivaldi M, Haussy C, Møller AP (2007) Intra- and interspecific relationships between nest size and immunity. Behav Ecol 18:781–791

    Article  Google Scholar 

  • Spottiswoode C, Møller AP (2004) Genetic similarity and hatching success in birds. Proc R Soc Lond B 271:267–272

    Article  Google Scholar 

  • Thomas GH, Wills MA, Székely T (2004) A supertree approach to shorebird phylogeny. BMC Evol Biol 4:28

    Article  PubMed  Google Scholar 

  • Toivanen P, Toivanen A (1987) Avian immunology: basis and practice. CRC Press, Boca Raton

    Google Scholar 

  • Vas Z, Csörgö T, Møller AP, Rózsa L (2008) The feather holes on the barn swallow Hirundo rustica and other small passerines are probably caused by Brueelia spp. lice. J Parasitol 94:1438–1440

    Article  PubMed  Google Scholar 

  • Wakelin D (1996) Immunity to parasites: how parasitic infections are controlled. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This research was funded by Ministerio de Educación y Ciencia and FEDER (project CGL2007-61251/BOS) to A. P. Møller, J. J. Soler and J. M. Peralta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Pape Møller.

Additional information

Communicated by Markku Orell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Møller, A.P., Erritzøe, J. & Rózsa, L. Ectoparasites, uropygial glands and hatching success in birds. Oecologia 163, 303–311 (2010). https://doi.org/10.1007/s00442-009-1548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1548-x

Keywords

Navigation