Skip to main content
Log in

Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus)

  • Behavioral ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The regulation of reproductive schedules is an important determinant of avian breeding success. In heterogeneous environments, the optimal breeding period may fluctuate temporally across habitats, often on a spatial scale much shorter than the average dispersal range of individuals. The synchronisation of reproductive events with the most favourable period at a given site therefore involves the integration of a suite of fine-scale environmental signals which contain information about future breeding conditions. In this study, we monitored clutch initiation date of blue tits (Cyanistes caeruleus) breeding in a wide range of environmental conditions (altitude, temperature regimes, habitat type) in Corsica (France) to understand the role of spring temperature and leafing phenology on the precise fine-tuning of egg laying on a local scale. Timing of breeding in blue tits was strongly correlated with phenology of the dominant vegetation (r 2 = 0.87). In contrast, spring temperature was not as robust a predictor of the timing of breeding, because a large part of the residual variation in egg-laying date was accounted by differences (ca. 2 weeks) in the development of the vegetation between habitat types (evergreen vs. deciduous oak forests). Female blue tits therefore appear to use the environmental variable (vegetation phenology) that is most closely linked to the future production of insect prey in order to accurately time laying over the entire spatio-temporal breeding landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bears H, Drever MC, Martin K (2008) Comparative morphology of dark-eyed juncos Junco hyemalis breeding at two elevations: a common aviary experiment. J Avian Biol 39:152–162

    Article  Google Scholar 

  • Blondel J (1985) Comparative breeding ecology of the blue tit and the coal tit in mainland and island Mediterranean habitats. J Anim Ecol 54:531–556

    Article  Google Scholar 

  • Blondel J, Dias PC, Maistre M, Perret P (1993) Habitat heterogeneity and life history variation of Mediterranean blue tits (Parus caeruleus). Auk 110:511–520

    Google Scholar 

  • Blondel J, Dias PC, Perret P, Maistre M, Lambrechts MM (1999) Selection-based biodiversity at a small spatial scale in a low-dispersing insular bird. Science 285:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM (2006) A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean mosaics. Bioscience 56:661–673

    Article  Google Scholar 

  • Bourgault P, Caro SP, Perret P (2006) Do blue tits time their breeding based on cues obtained by consuming buds? J Field Ornithol 77:399–403

    Article  Google Scholar 

  • Bowlin MS, Winkler DW (2004) Natural variation in flight performance is related to timing of breeding in tree swallows (Tachycineta bicolor) in New York. Auk 121:345–353

    Article  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    Article  CAS  PubMed  Google Scholar 

  • Buse A, Good JE (1996) Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in pedunculate oak (Quercus robur L.) under simulated climate change. Ecol Entomol 21:335–343

    Article  Google Scholar 

  • Caro SP, Charmantier A, Lambrechts MM, Blondel J, Balthazart J, Williams TD (2008) Local adaptation of timing of breeding: females are in the driver’s seat. Funct Ecol. doi 10.1111/j.1365-2435.2008.01486.x

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phythol 143:339–349

    Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. University of Chicago Press, Chicago

    Google Scholar 

  • Coppack T (2007) Experimental determination of the photoperiodic basis for geographic variation in avian seasonality. J Ornithol (suppl) 148:459–467

    Article  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Dawson A (2005) The effect of temperature on photoperiodically regulated gonadal maturation, regression and moult in starlings—potential consequences of climate change. Funct Ecol 19:995–1000

    Article  Google Scholar 

  • Dias PC, Blondel J (1996) Local specialization and maladaptation in the Mediterranean blue tit (Parus caeruleus). Oecologia 107:79–86

    Article  Google Scholar 

  • du Merle P, Mazet R (1983) Stades phénologiques et infestation par Tortrix viridana L. (Lep., Tortricidae) des bourgeons du chêne pubescent et du chêne vert. Acta Oecol 4:47–53

    Google Scholar 

  • Gienapp P, Hemerik L, Visser ME (2005) A new statistical tool to predict phenology under climate change scenarios. Global Chang Biol 11:600–606

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Jacobs JD, Wingfield JC (2000) Endocrine control of life-cycle stages: a constraint on response to the environment? Condor 102:35–51

    Article  Google Scholar 

  • Lack D (1966) Population studies of birds. Oxford University Press, Oxford

    Google Scholar 

  • Lambrechts MM, Perret P (2000) A long photoperiod overrides non-photoperiodic factors in blue tits’ timing of reproduction. Proc R Soc Lond B 267:585–588

    Article  CAS  Google Scholar 

  • Lambrechts M, Blondel J, Hurtrez-Bousses S, Maistre M, Perret P (1997) Adaptive inter-population differences in blue tit life history traits on Corsica. Evol Ecol 11:599–612

    Article  Google Scholar 

  • Lambrechts MM, Caro S, Charmantier A, Gross N, Galan MJ, Perret P, Cartan-Son M, Dias PC, Blondel J, Thomas DW (2004) Habitat quality as a predictor of spatial variation in blue tit reproductive performance: a multi-plot analysis in a heterogeneous landscape. Oecologia 141:555–561

    Article  PubMed  Google Scholar 

  • Loe LE, Bonenfant C, Mysterud A, Gaillard JM, Langvatn R, Klein F, Calenge C, Ergon T, Pettorelli N, Stenseth NC (2005) Climate predictability and breeding phenology in red deer: timing and synchrony of rutting and calving in Norway and France. J Anim Ecol 74:579–588

    Article  Google Scholar 

  • Meijer T, Drent R (1999) Re-examination of the capital and income dichotomy in breeding birds. Ibis 141:399–414

    Article  Google Scholar 

  • Meijer T, Nienaber U, Langer U, Trillmich F (1999) Temperature and timing of egg-laying of European starlings. Condor 101:124–132

    Article  Google Scholar 

  • Merilä J, Sheldon BC (2001) Avian quantitative genetics. Curr Ornithol 16:179–255

    Google Scholar 

  • Moller AP (2008) Climate change and micro-geographic variation in laying date. Oecologia 155:845–857

    Article  PubMed  Google Scholar 

  • Nager RG, van Noordwijk AJ (1992) Energetic limitation in the egg-laying period of great tits. Proc R Soc Lond B 249:259–263

    Article  Google Scholar 

  • Nager RG, van Noordwijk AJ (1995) Proximate and ultimate aspects of phenotypic plasticity in timing of great tit breeding in a heterogeneous environment. Am Nat 146:454–474

    Article  Google Scholar 

  • Nilsson JA (1999) Fitness consequences of timing of reproduction. In: Adams NJ, Slotow RH (eds) Proceedings of the 22nd IOC. BirdLife, South Africa, pp 234–247

    Google Scholar 

  • Nilsson JA, Källander H (2006) Leafing phenology and timing of egg laying in great tits Parus major and blue tits P. caeruleus. J Avian Biol 37:357–363

    Article  Google Scholar 

  • Nilsson JA, Svensson E (1996) The cost of reproduction: a new link between current reproductive effort and future reproductive success. Proc R Soc Lond B 263:711–714

    Article  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Chang Biol 8:531–544

    Article  Google Scholar 

  • Perfito N, Tramontin AD, Meddle S, Sharp PJ, Afik D, Gee J, Ishii S, Kikuchi M, Wingfield JC (2004) Reproductive development according to elevation in a seasonally breeding male song-bird. Oecologia 140:201–210

    Article  PubMed  Google Scholar 

  • Perfito N, Meddle SL, Tramontin AD, Sharp PJ, Wingfield JC (2005) Seasonal gonadal recrudescence in song sparrows: response to temperature cues. Gen Comp Endocr 143:121–128

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New York

    Google Scholar 

  • Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond B 270:591–596

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Silverin B, Viebke PA (1994) Low temperatures affect the photoperiodically induced LH and testicular cycles differently in closely related species of tits (Parus spp.). Horm Behav 28:199–206

    Article  CAS  PubMed  Google Scholar 

  • Silverin B, Wingfield J, Stokkan KA, Massa R, Järvinen A, Andersson NA, Lambrechts M, Sorace A, Blomqvist D (2008) Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes. Horm Behav 54:60–68

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  • Thomas DW, Blondel J, Perret P, Lambrechts MM, Speakman JR (2001) Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291:2598–2600

    Article  CAS  PubMed  Google Scholar 

  • Thomas DW, Bourgault P, Shipley B, Perret P, Blondel J (2009) Context-dependent shifts in the weighting of environmental cues that initiate breeding in a temperate passerine, the Corsican blue tit (Cyanistes caeruleus). Auk (in press)

  • Tramontin AD, Wingfield JC, Brenowitz PA (1999) Contributions of social cues and photoperiod to seasonal plasticity in the adult avian song control system. J Neurosci 19:476–483

    CAS  PubMed  Google Scholar 

  • Tremblay I, Thomas DW, Lambrechts MM, Blondel J, Perret P (2003) Variation in blue tit breeding performance across gradients in habitat richness. Ecology 84:3033–3043

    Article  Google Scholar 

  • van Balen JH (1973) A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 61:1–93

    Google Scholar 

  • van Dongen S, Backeljau T, Matthysen E, Dhondt AA (1997) Synchronization of hatching date with budburst of individual host trees (Quercus robur) in the winter moth (Operophtera brumata) and its fitness consequences. J Anim Ecol 66:113–121

    Article  Google Scholar 

  • Verhulst S, Tinbergen JM (1991) Experimental evidence for a causal relationship between timing and success of reproduction in the great tit Parus m. major. J Anim Ecol 60:269–282

    Article  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc Lond B 275:649–659

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B 268:289–294

    Article  CAS  Google Scholar 

  • Visser ME, Lambrechts MM (1999) Information constraints in the timing of reproduction in temperate zone birds: great and blue tits. In: Adams NJ, Slotow RH (eds) Proceedings of the 22nd IOC. BirdLife South Africa, Durban, Johannesburg, pp 279–294

  • Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110

    Article  Google Scholar 

  • Visser ME, Holleman LJM, Caro SP (2009) Temperature has a causal effect on avian timing of reproduction. Proc R Soc Lond B 276:2323–2331

    Article  Google Scholar 

  • Wingfield JC, Hahn TP, Levin R, Honey P (1992) Environmental predictability and control of gonadal cycles in birds. J Exp Zool 261:214–231

    Article  Google Scholar 

  • Wingfield JC, Visser ME, Williams TD (2008) Integration of ecology and endocrinology in avian reproduction: a new synthesis. Philos Trans R Soc B 363:1581–1588

    Article  Google Scholar 

  • Yom-Tov Y, Wright J (1993) Effect of heating nest boxes on egg laying in the blue tit (Parus caeruleus). Auk 110:95–99

    Google Scholar 

Download references

Acknowledgments

We thank A. Mennerat, P.-A. Bernier, P. Garcia-Cournoyer for valuable assistance in the field, and D. and L. Zamboni for providing housing at Muro. We also thank the Association pour l’Etude de l’Environnement du Maquis for housing and laboratory space at Pirio. This research was funded by a NSERC discovery grant to D. W. T., as well as a NSERC doctoral scholarship and by international cooperation funding from the Ministère des Relations Internationales (Québec) and the Ministère Délégué à l’Enseignement Supérieur et à la Recherche (France) to P. B. The research activities complied with relevant laws and regulations of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Bourgault.

Additional information

Communicated by Esa Lehikoinen.

Don Thomas: Deceased, 30 May 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgault, P., Thomas, D., Perret, P. et al. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010). https://doi.org/10.1007/s00442-009-1545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1545-0

Keywords

Navigation