Skip to main content
Log in

Linking calcification by exotic snails to stream inorganic carbon cycling

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

An Erratum to this article was published on 06 February 2010

Abstract

Biotic calcification is rarely considered in freshwater C budgets, despite calculations suggesting that calcifying animals can alter inorganic C cycling. Most studies that have quantified biocalcification in aquatic ecosystems have not directly linked CO2 fluxes from biocalcification with whole-ecosystem rates of inorganic C cycling. The freshwater snail, Melanoides tuberculata, has achieved a high abundance and 37.4 g biomass m−2 after invading Kelly Warm Springs in Grand Teton National Park. This high biomass suggests that introduced populations of Melanoides may alter ecosystem processes. We measured Melanoides growth rates and biomass to calculate the production of biomass, shell mass, and CO2. We compared Melanoides biomass and inorganic C production with ecosystem C pools and fluxes, as well as with published rates of CO2 production by other calcifying organisms. Melanoides calcification in Kelly Warm Springs produced 12.1 mmol CO2 m−2 day−1 during summer months. We measured high rates of gross primary productivity and respiration in Kelly Warm Springs (−378 and 533 mmol CO2 m−2 day−1, respectively); CO2 produced from biocalcification increased net CO2 production in Kelly Warm Springs from 155 to 167 mmol CO2 m−2 day−1. This rate of CO2 production via biocalcification is within the published range of calcification by animals. But these CO2 fluxes are small when compared to ecosystem C fluxes from stream metabolism. The influence of animals is relative to ecosystem processes, and should always be compared with ecosystem fluxes to quantify the importance of a specific animal in its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benke AC (1984) Secondary production of aquatic insects. In: Resh VH, Rosenberg DM (eds) Ecology of aquatic insects. Praeger, New York, pp 289–322

    Google Scholar 

  • Benke AC, Huryn AD, Smock LA, Wallace JB (1999) Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J North Am Benthol Soc 18:308–343

    Article  Google Scholar 

  • Berry AJ, Kadri ABH (1974) Reproduction in the Malayan freshwater cerithiacean gastropod Melanoides tuberculata. J Zool 172:369–381

    Article  Google Scholar 

  • Cai W-J, Wang Y (1998) The chemistry, fluxes, and source of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43:657–668

    CAS  Google Scholar 

  • Caraco NF, Cole JJ, Raymond PA, Strayer DL, Pace ML, Findlay SEG, Fischer DT (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78:588–602

    Article  Google Scholar 

  • Caraco NF, Cole JJ, Findlay SEG, Fischer DT, Lampman GG, Pace ML, Strayer DL (2000) Dissolved oxygen declines in the Hudson River associated with the invasion of the zebra mussel (Dreissena polymorpha). Environ Sci Technol 34:1204–1210

    Article  CAS  Google Scholar 

  • Chauvaud L, Thompson JK, Cloern JE, Thouzeau G (2003) Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol Oceanogr 48:2086–2092

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient additions and food web manipulations. Limnol Oceanogr 45:1718–1730

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middleburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  PubMed  CAS  Google Scholar 

  • Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870

    Article  CAS  Google Scholar 

  • Dudgeon D (1986) The life cycle, population dynamics and productivity of Melanoides tuberculata (Müller, 1774) (Gastropoda: Prosobranchia: Thiaridae) in Hong Kong. J Zool 208:37–53

    Google Scholar 

  • Duggan IC (2002) First record of a wild population of the tropical snail Melanoides tuberculata in New Zealand natural waters. NZ J Mar Freshwater Res 36:825–829

    Article  Google Scholar 

  • Fabry VF (1990) Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: implications for the marine carbonate system. J Mar Res 48:209–222

    Article  CAS  Google Scholar 

  • Facon B, Pointer J-P, Glaubrecht M, Poix C, Jarne P, David P (2003) A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Mol Ecol 12:3027–3039

    Article  CAS  PubMed  Google Scholar 

  • Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigor is more important than increase in genetic variance. J Evol Biol 18:524–535

    Article  CAS  PubMed  Google Scholar 

  • Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135

    Article  PubMed  Google Scholar 

  • Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462

    Article  CAS  Google Scholar 

  • Golléty C, Gentil F, Davoult D (2008) Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus. Oecologia 155:133–142

    Article  PubMed  Google Scholar 

  • Hall RO, Tank JL (2005) Correcting whole-stream estimates of metabolism for groundwater input. Limnol Oceanogr Methods 3:222–229

    CAS  Google Scholar 

  • Hall RO, Tank JL, Dybdahl MF (2003) Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Front Ecol Environ 1:407–411

    Article  Google Scholar 

  • Hall RO, Dybdahl MF, VanderLoop MC (2006) Extremely high secondary production of introduced snails in rivers. Ecol Appl 16:1121–1131

    Article  PubMed  Google Scholar 

  • Hall RO, Thomas S, Gaiser EE (2007) Measuring primary production and respiration in freshwater ecosystems. In: Fahey TJ, Knapp AK (eds) Principles and standards for measuring primary production. Oxford University Press, Oxford, pp 175–203

    Chapter  Google Scholar 

  • Huryn AD, Benke AC, Ward GM (1995) Direct and indirect effects of geology on the distribution, biomass, and production of the freshwater snail Elimia. J North Am Benthol Soc 14:519–534

    Article  Google Scholar 

  • Jones JB, Mulholland PJ (1998) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40:57–72

    Article  CAS  Google Scholar 

  • Kiibus M, Kautsky N (1996) Respiration, nutrient excretion and filtration rate of tropical freshwater mussels and their contribution to production and energy flow in Lake Kariba, Zimbabwe. Hydrobiologia 331:25–32

    Article  CAS  Google Scholar 

  • Langmuir D (1997) Aqueous environmental chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L, Clavier J (2006) Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: implications for carbon, carbonate, and nitrogen fluxes in affected areas. Limnol Oceanogr 51:1996–2007

    Article  CAS  Google Scholar 

  • Migné A, Davoult D, Gattuso J-P (1998) Calcium carbonate production of a dense population of the brittle star Ophiothrix fragilis (Echinodermata: Ophiuroidea): role in the carbon cycle of a temperate coastal ecosystem. Mar Ecol Prog Ser 173:305–308

    Article  Google Scholar 

  • Millero FJ (1979) The thermodynamics of the carbonate system in seawater. Geochim Cosmochim Acta 43:1651–1661

    Article  CAS  Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Martí E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ (2001) Inter-biome comparison of factors controlling stream metabolism. Freshwater Biol 46:1503–1517

    Article  CAS  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Pointier JP, Delay B, Toffart JL, Lefevre M, Romero-Alvarez R (1992) Life history traits of three morphs of Melanoides tuberculata (Gastropoda: Thiaridae), an invading snail in the French West Indies. J Mollusc Stud 58:415–423

    Article  Google Scholar 

  • Pointier JP, Théron A, Borel G (1993) Ecology of the introduced snail Melanoides tuberculata (Gastropoda: Thiaridae) in relation to Biomphalaria glabrata in the marshy forest zone of Guadeloupe, French West Indies. J Mollusc Stud 59:421–428

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. Vienna

  • Rader RB, Belk MC, Keleher MJ (2003) The introduction of an invasive snail (Melanoides tuberculata) to spring ecosystems of the Bonneville Basin, Utah. J Freshwater Ecol 18:647–657

    Google Scholar 

  • Raine RCT (1983) The effect of nitrogen supply on the photosynthetic quotient of natural phytoplankton assemblages. Bot Mar 26:417–423

    Article  CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester MV, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  CAS  PubMed  Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  CAS  Google Scholar 

  • Robinson DG (1999) Alien invasions: the effects of the global economy on non-marine gastropod introductions into the United States. Malacologia 41:413–438

    Google Scholar 

  • SAS Institute (2002–2003) SAS/STAT User’s Guide, Release 9.1.3. SAS Institute, Cary

    Google Scholar 

  • Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–251

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi:10.1029/2008GL036282

    Article  CAS  Google Scholar 

  • Smith SV (1972) Production of calcium carbonate on the mainland shelf of southern California. Limnol Oceanogr 17:28–41

    Article  CAS  Google Scholar 

  • Smith AM, Nelson CS (1994) Calcification rates of rapidly colonizing bryozoans in Hauraki Gulf, northern New Zealand. NZ J Mar Freshwater Res 28:227–234

    Article  Google Scholar 

  • Strayer DL, Malcom HM (2007) Shell decay rates of native and alien freshwater bivalves and implications for habitat engineering. Freshwater Biol 52:1611–1617

    Article  CAS  Google Scholar 

  • Strayer DL, Caraco NF, Cole JJ, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience 49:19–27

    Article  Google Scholar 

  • Subba Rao NV, Mitra SC (1982) Bioecology of two melaniid snails (Mollusca: Gastropoda) in ponds near Calcutta. J Zool Soc (India) 1&2:21–32

    Google Scholar 

  • Taylor BW, Flecker AS, Hall RO (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313:833–836

    Article  CAS  PubMed  Google Scholar 

  • United States Geological Survey (2005) Nonindigenous aquatic species database, Gainesville. http://nas.er.usgs.gov. Accessed Mar 2007

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Mulholland PJ, Elwood JW (1990) Gas exchange rates for a first order stream determined with deliberate and natural tracers. Water Resour Res 26:1621–1630

    CAS  Google Scholar 

  • Ware JR, Smith SV, Reaka-Kudla ML (1991) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnological analyses, 3rd edn. Springer, New York

    Google Scholar 

  • Williams PB, del Giorgio PA (2005) Respiration in aquatic ecosystems: history and background. In: del Giorgio PA, Williams PB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 1–17

    Chapter  Google Scholar 

  • Wilson RW, Millero FJ, Taylor JR, Walsh PJ, Christiansen V, Jennings S, Grosell M (2009) Contribution of fish to the marine inorganic carbon cycle. Science 323:344–359

    Article  Google Scholar 

  • Young RG, Matthaei CD, Townsend CR (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J North Am Benthol Soc 27:605–625

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Pendall, A. Krist, D. Strayer, E. Hansen, A. Ulseth, L. Kunza and two anonymous reviewers for helpful comments on earlier drafts of our manuscript. S. O’Ney and H. Harlow provided logistical support. R. Crosby, J. Theurer, N. Swoboda-Colberg, and T. Lehnertz assisted with field and lab work. Discussions with J. Meyer also contributed to this research. This project was funded by a University of Wyoming–National Park Service research grant. Research was also supported by a Plummer Scholarship (School of Environment and Natural Resources, University of Wyoming), a Dennis Jesperson Memorial Scholarship (Wyoming Wildlife Fund), and a Colorado Lake and Reservoir Management Association Scholarship. This manuscript is a contribution to the University of Wyoming–National Park Service Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin R. Hotchkiss.

Additional information

Communicated by Barbara Downes.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00442-010-1574-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotchkiss, E.R., Hall, R.O. Linking calcification by exotic snails to stream inorganic carbon cycling. Oecologia 163, 235–244 (2010). https://doi.org/10.1007/s00442-009-1536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1536-1

Keywords

Navigation