Skip to main content
Log in

Nitrogen fixation in mixed Hylocomium splendens moss communities

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The pleurocarpus feather moss, Hylocomium splendens, is one of two co-dominant moss species in boreal forest ecosystems and one of the most common mosses on earth, yet little is known regarding its capacity to host cyanobacterial associates and thus contribute total ecosystem N. In these studies, we evaluated the N-fixation potential of the H. splendens–cyanobacteria association and contrasted the N-fixation activity with that of the putative N-fixing moss–cyanobacteria association of Pleurozium schreberi. Studies were conducted to: quantify N-fixation in H. splendens and P. schreberi in sites ranging from southern to northern Fennoscandia; assess N and P availability as drivers of N-fixation rates; contrast season-long N-fixation rates for both mosses; and characterize the cyanobacteria that colonize shoots of H. splendens. Nitrogen-fixation rates were generally low at southern latitudes and higher at northern latitudes (64–69°N) potentially related to anthropogenic N deposition across this gradient. Nitrogen fixation in H. splendens appeared to be less sensitive to N deposition than P. schreberi. The season-long assessment of N-fixation rates at a mixed feather moss site in northern Sweden showed that H. splendens fixed a substantial quantity of N, but about 50% less total N compared to the contribution from P. schreberi. In total, both species provided 1.6 kg fixed N ha−1 year−1. Interestingly, H. splendens demonstrated somewhat higher N-fixation rates at high fertility sites compared to P. schreberi. Nostoc spp. and Stigonema spp. were the primary cyanobacteria found to colonize H. splendens and P. schreberi. These results suggest that H. splendens with associated Nostoc or Stigonema communities contributes a significant quantity of N to boreal forest ecosystems, but the contribution is subordinate to that of P. schreberi at northern latitudes. Epiphytic cyanobacteria are likely a key factor determining the co-dominant presence of these two feather mosses across the boreal biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DG, Duggan PS (2008) Cyanobacteria–bryophyte symbioses. J Exp Bot 59:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Ayres E, van der Wal R, Sommerkorn M, Bardgett RD (2006) Direct uptake of soil nitrogen by mosses. Biol Lett 2:286–288

    Article  PubMed  CAS  Google Scholar 

  • Binkley D, Graham RL (1981) Biomass, production and nutrient cycling of mosses in an old-growth Douglas-fir forest. Ecology 62:1387–1399

    Article  Google Scholar 

  • Binkley D, Son Y, Valentine DW (2000) Do forest receive occult inputs of nitrogen? Ecosystems 3:321–331

    Article  CAS  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV (2001) Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–270

    Article  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Article  Google Scholar 

  • Bond-Lamberty B, Gower ST (2007) Estimation of stand level leaf area for boreal bryophytes. Oecologia 151:584–592

    Article  PubMed  Google Scholar 

  • Brown DH, Bates JW (1990) Bryophytes and nutrient cycling. Bot J Linn Soc 104:129–147

    Article  Google Scholar 

  • Chapin FS, Oechel WC, Van Cleve K, Lawrence W (1987) The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia 74:310–315

    Article  Google Scholar 

  • Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental regulation of Nitrogen-fixation in a high arctic lowland ecosystem. Can J Bot 69:2744–2755

    Article  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation. Global Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  PubMed  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen-fixation in boreal feather moss communities. Oecologia 152:121–130

    Article  PubMed  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen-fixation in boreal forests. Science 320:1181–1181

    Google Scholar 

  • Engelmark O (1999) Boreal forest disturbance. In: Walker RL (ed) Ecosystems of disturbed ground. Elsevier, Burlington, pp 161–186

    Google Scholar 

  • Fisher R, Mues V, Ulrich E, Becher G, Lorenz M (2007) Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Appl Geochem 22:1129–1139

    Article  CAS  Google Scholar 

  • Forsum Å, Dahlman T, Näsholm T, Nordin A (2006) Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment. Funct Ecol 20:421–426

    Article  Google Scholar 

  • Gentili F, Nilsson MC, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2 fixing cyanobacteria. J Exp Bot 56:3121–3127

    Article  PubMed  CAS  Google Scholar 

  • Giesler R, Högberg P, Peterssen T (2002) Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer. Ecosystems 5:300–314

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Hägglund B, Lundmark JE (1977) Site index estimation by means of site properties. Stud For Suec 138:1–34

    Google Scholar 

  • Hart SA, Chen HYH (2008) Fire, logging and understory abundance, diversity and composition in boreal forest. Ecol Monogr 78:123–140

    Article  Google Scholar 

  • Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia 147:96–107

    Article  PubMed  Google Scholar 

  • Houle D, Gauthier SB, Paquet S, Planas D, Warren A (2006) Identification of two genera of nitrogen fixing cyanobacteria growing on three feathermoss species in boreal forests of Quebec, Canada. Can J Bot 84:1025–1029

    Article  Google Scholar 

  • Huttunen S, Karhu M, Kallio S (1981) The effect of air pollution on transplanted mosses. Silva Fenn 15:495–504

    Google Scholar 

  • Kuc M (1997) The northernmost extension of the moss Pleurozium schreberi (Brid.) Mitt. in the Canadian high arctic. Can Field Nat 111:630–633

    Google Scholar 

  • Lagerström A, Nilsson M-C, Zackrisson O, Wardle D (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033

    Article  Google Scholar 

  • Longton RE (1992) Role of bryophytes and lichens in terrestrial ecosystems. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in an changing environment. Clarendon, Oxford, pp 32–76

    Google Scholar 

  • Lovett GM, Lindberg ST (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res 23:1603–1616

    Article  CAS  Google Scholar 

  • Makipää R, Heikkinen J (2003) Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. J Veg Sci 14:497–508

    Article  Google Scholar 

  • Mankovska B, Oszlanyi J (2008) Mosses and foliage of forest tree species as biomonitors of nitrogen pollution. Int J Environ Stud 65:377–387

    Article  CAS  Google Scholar 

  • Murray MJ, Tenhunen JD, Nowak RS (1993) Photoinhibition as a control on photosynthesis and production of sphagnum mosses. Oecologia 96:200–207

    Article  Google Scholar 

  • Nilsson M-C, Wardle D (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Sweden boreal forest. Front Ecol Environ 3:421–428

    Article  Google Scholar 

  • Nyholm E (1965) Illustrated moss flora of Fennoscandia. II. Musci. Gleerup, Lund

    Google Scholar 

  • Ochyra R, Brednarek-Ochyra H (2002) Pleurozium schreberi recorded for tropical Africa and a review of its world distribution. Cryptogam Bryol 23:355–360

    Google Scholar 

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck L, Dyrness LA (eds) Forest ecosystems in the Alaskan taiga. Springer, New York, pp 121–137

    Google Scholar 

  • Påhlsson L (1994) Vegetationstyper i Norden. Nordiska Ministerrådet, Köpenhamn

    Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH (ed) A system analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 144–169

    Google Scholar 

  • Persson H, Viereck LA (1983) Collections and discussions of some bryophytes from Alaska. Lindbergia 9:5–20

    Google Scholar 

  • Phil-Karlsson G, Blomgren H, Pettersson K, Svensson A, Sjöberg K (2003) Nationell miljöövervakning av luft- och nederbördskemi 2002. IVL Report U 852. Swedish Environmental Institute, Göteborg, Sweden

  • Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Agren GI (2001) Resource optimization and symbiotic nitrogen-fixation. Ecosystems 4:369–388

    Article  CAS  Google Scholar 

  • Rikkinen J, Oksanen I, Lothander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    Article  PubMed  CAS  Google Scholar 

  • Salemää M, Mäkipää R, Oksanen J (2008) Differences in growth response of three bryophyte species to nitrogen. Environ Pollut 152:82–91

    Article  PubMed  CAS  Google Scholar 

  • Schofield WB (1992) Bryophyte distribution patterns. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 103–130

    Google Scholar 

  • Schöllhorn R, Burris RH (1967) Acetylene as a competitive inhibitor of Nitrogen-fixation. Proc Natl Acad Sci USA 58:213–218

    Article  PubMed  Google Scholar 

  • Smithwick EAH, Turner M, Mack MC, Chapin FSIII (2005) Post fire soil N cycling in northern conifer forests affected by severe, stand replacing wildfires. Ecosystems 8:163–181

    Article  CAS  Google Scholar 

  • Solheim B, Johanson U, Callaghan TV, Lee JA, Gwynn-Jones D, Björn LO (2002) The Nitrogen-fixation potential of arctic cryptogram species is influenced by enhanced UV-B radiation. Oecologia 133:90–93

    Article  Google Scholar 

  • Solheim B, Wiggen H, Roberg S, Spaink HP (2004) Associations between arctic cyanobacteria and mosses. Symbiosis 37:169–187

    Google Scholar 

  • Startsev NA, Lieffers VJ (2006) Dynamics of mineral nitrogen released from feathermosses after dehydration or handling stress. Bryologist 109:551–559

    Article  CAS  Google Scholar 

  • Tamm CO (1953) Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Medd Statens Skogsforskningsinst (Swed) 42:1–140

    Google Scholar 

  • Tamm CO (1964) Growth of Hylocomium splendens in relation to tree canopy. Bryologist 64:423–426

    Google Scholar 

  • Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409

    Article  Google Scholar 

  • Usher KM, Bergman B, Raven JA (2007) Exploring cyanobacterial mutualism. Annu Rev Ecol Evol Syst 38:255–273

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological Nitrogen-fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Walter H, Breckle SW (1989) Ecological systems of the geobiospehere. Springer, Berlin

    Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • Wardle DA, Hörnberg G, Zackrisson O, Coomes DA (2003a) Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O, Gallet C (2003b) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  • Weetman GF (1969) The relationship between feather moss growth and nutrient content under upland black spruce. Proceedings of 3rd International Peat Congress. Quebec, Canada, pp 366–370

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–284

    Article  PubMed  CAS  Google Scholar 

  • Zackrisson O, Nilsson M-C, Dahlberg A, Jäderlund A (1997) Interference mechanisms in conifer-Ericaceae-feathermoss communities. Oikos 78:209–220

    Article  Google Scholar 

  • Zackrisson O, Dahlberg A, Norberg G, Nilsson M-C, Jäderlund A (1998) Experiments on the effects of water availability and exclusion of fungal hyphae on nutrient uptake and establishment of Pinus sylvestris seedlings in carpets of the moss Pleurozium schreberi. Ecoscience 5:77–85

    Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson M-C, Sellstedt A, Berglund L (2004) Nitrogen-fixation increases with successional age in boreal forests. Ecology 85:3327–3334

    Article  Google Scholar 

  • Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illar A (2005) Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut 138:238–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Swedish Research Foundation, Formas for partially supporting this work. Thanks also to Marie-Charlotte Nilsson for her comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. DeLuca.

Additional information

Communicated by Hakan Wallander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zackrisson, O., DeLuca, T.H., Gentili, F. et al. Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia 160, 309–319 (2009). https://doi.org/10.1007/s00442-009-1299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1299-8

Keywords

Navigation