Skip to main content
Log in

Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient

  • Physiological Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north–south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m−2 year−1 in the north, to 1.49 g N m−2 year−1 in the south. The maximum photosynthetic rate (NPmax) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m−2 year−1, but for S. balticum it seemed to level out at 1.14 g N m−2 year−1. The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NPmax was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence—a signature of photosynthesis. Springer, Dordrecht, pp 583–604

  • Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Article  Google Scholar 

  • Alpert P (1984) Analysis of chlorophyll content in mosses through extraction in DMSO. Bryologist 87:363–365

    Article  Google Scholar 

  • Arróniz-Crespo M, Leake JR, Horton P, Phoenix GK (2008) Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytol 180:864–874

    Google Scholar 

  • Austin KA, Wieder RK (1987) Effects of elevated H+, SO4 2−, NO3 , and NH4 + in simulated acid precipitation on the growth and chlorophyll content of 3 North American Sphagnum species. Bryologist 90:221–229

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee JA (1989) Effects of the bisulphite ion on growth and photosynthesis in Sphagnum cuspidatum Hoffm. New Phytol 111:457–462

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee JA (1992) Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytol 120:265–274

    Article  CAS  Google Scholar 

  • Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Lacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389

    Article  PubMed  CAS  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biol 13:1168–1186

    Article  Google Scholar 

  • Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49

    Article  Google Scholar 

  • Csintalan Z, Proctor MCF, Tuba Z (1999) Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm. Ann Bot 84:235–244

    Article  CAS  Google Scholar 

  • Daniels RE, Eddy A (1990) Handbook of European Sphagna. Institute of Terrestrial Ecology, Abbots Ripton

  • Deltoro VI, Calatayud A, Gimeno C, Abadia A, Barreno E (1998) Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta 207:224–228

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C-3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Gaberscik A, Martincic A (1987) Seasonal dynamics of net photosynthesis and productivity of Sphagnum papillosum. Lindbergia 13:105–110

    Google Scholar 

  • Gerdol R, Bonora A, Gualandri R, Pancaldi S (1996) CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration. Can J Bot 74:726–734

    Article  CAS  Google Scholar 

  • Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biol 13:1810–1821

    Article  Google Scholar 

  • Glime JM (2007) Bryophyte ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu/. Accessed 1 Oct 2007

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:267–277

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilisation reduces Sphagnum production in Swedish bogs. New Phytol 147:527–537

    Article  CAS  Google Scholar 

  • Gunnarsson U, Sjörs H, Rydin H (2000) Diversity and pH changes after 50 years on the boreal mire Skattlösbergs Stormosse, Central Sweden. J Veg Sci 11:277–286

    Article  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704

    Article  Google Scholar 

  • Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytol 163:349–359

    Article  Google Scholar 

  • Hajek T, Beckett R (2008) Effect of water content components on desiccation and recovery in Sphagnum mosses. Ann Bot 101:165–173

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:251–259

    Article  Google Scholar 

  • Hikosaka K, Kato MC, Hirose T (2004) Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol Plant 121:699–708

    Article  CAS  Google Scholar 

  • Koranda M, Kerschbaum S, Wanek W, Zechmeister H, Richter A (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Ann Bot 99:161–169

    Article  PubMed  CAS  Google Scholar 

  • Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biol 6:583–586

    Article  Google Scholar 

  • Lee JA, Baxter R, Emes MJ (1990) Responses of Sphagnum species to atmospheric nitrogen and sulphur deposition. Bot J Linn Soc 104:255–265

    Article  Google Scholar 

  • Li Y, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience 4:106–116

    Google Scholar 

  • Limpens J, Berendse F (2003) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    PubMed  CAS  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003a) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Limpens J, Raymakers JTAG, Baar J, Berendse F, Zijlstra JD (2003b) The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103:59–68

    Article  Google Scholar 

  • Manning P, Newington JE, Robson HR, Saunders M, Eggers T, Bradford MA, Bardgett RD, Bonkowski M, Ellis RJ, Gange AC, Grayston SJ, Kandeler E, Marhan S, Reid E, Tscherko D, Godfray HCJ, Rees M (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024

    Article  PubMed  Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Murray KJ, Tenhunen JD, Nowak RS (1993) Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia 96:200–207

    Article  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Nordin A, Gunnarsson U (2000) Amino acid accumulation and growth of Sphagnum under different levels of N deposition. Ecoscience 7:474–480

    Google Scholar 

  • Nordin A, Strengbom J, Witzell J, Nasholm T, Ericson L (2005) Nitrogen deposition and the biodiversity of boreal forests: implications for the nitrogen critical load. Ambio 34:20–24

    Article  PubMed  Google Scholar 

  • Palmqvist K, Sundberg B (2001) Characterising photosynthesis and respiration in freshly isolated or cultured lichen photobionts. In: Kranner I, Beckett R, Varma A (eds) Protocols in lichenology—culturing, biochemistry, physiology and use in biomonitoring. Springer, Berlin, pp 152–181

    Google Scholar 

  • Persson C, Ressner E, Klein T (2004) Nationell miljöövervakning—MATCH—Sverige modellen Metod- och resultatsammanställning för åren 1999–2002 samt diskussion av osäkerheter, trender och miljömål. Meteorologi report 113. Swedish Meteorological and Hydrological Institute (SMHI), Norrköping

  • Potter L, Foot JP, Caporn SJM, Lee JA (1996) Responses of four Sphagnum species to acute ozone fumigation. J Bryol 19:19–32

    Google Scholar 

  • Press MC, Woodin SJ, Lee JA (1986) The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum species. New Phytol 103:45–55

    Article  CAS  Google Scholar 

  • Raeymaekers G, Longwith JE (1987) The use of DMSO as a solvent to extract chlorophyll from mosses. In: Pocs T, Simon T, Tuba Z, Podani J (eds) Proceedings of the IAB Conference of Bryoecology, parts A and B, Kiado, Budapest, Hungary. pp 151–164

  • Rudolph H, Voigt JU (1986) Effects of NH4 +-N and NO3 -N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–343

    Article  Google Scholar 

  • Rudolph H, Hohlfeld J, Jacubowski S, von der Lage P, Matlok H, Schmidt H (1993) Nitrogen metabolism of Sphagnum. Adv Bryol 5:79–105

    Google Scholar 

  • Rydin H, Jeglum JK (2006) The biology of Peatlands. Oxford University Press, New York

    Google Scholar 

  • Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol 140:677–684

    Article  Google Scholar 

  • Simola LK (1975) The effect of several protein amino acids and some inorganic nitrogen sources on the growth of Sphagnum nemoreum. Physiol Plant 35:194–199

    Article  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Strengbom J, Nordin A, Nasholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67

    Article  Google Scholar 

  • van der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum. (Russ.) Warnst. Global Change Biol 6:201–212

    Article  Google Scholar 

  • Vergeer P, van den Bergv LLJ, Bulling MT, Ashmore MR, Kunin WE (2008) Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea. New Phytol 179:129–141

    Article  PubMed  CAS  Google Scholar 

  • Vitt DH, Wieder K, Halsey LA, Turetsky M (2003) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–245

    Article  Google Scholar 

  • Weih M, Rönnberg-Wästljung A-C (2007) Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies. Tree Physiol 27:1551–1559

    PubMed  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wiedermann MM, Nordin A, Gunnarsson U, Nilsson MB, Ericson L (2007) Global change shifts vegetation and plant-parasite interactions in a boreal mire. Ecology 88:454–464

    Article  PubMed  Google Scholar 

  • Wiedermann MM, Gunnarsson U, Ericson L, Nordin A (2008) Ecophysiological adjustment of two Sphagnum species in response to anthropogenic N deposition. New Phytol 181:208–217

    Google Scholar 

Download references

Acknowledgments

We thank Michael Proctor and Kouki Hikosaka for comments on the manuscript. Funding for this project was provided by Formas, VR and the Netherlands Organization for Scientific Research (NWO-project 110015-01). The work conforms to the legal requirements of the countries in which it was carried out, including those relating to conservation and welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustaf Granath.

Additional information

Communicated by Kouki Hikosaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granath, G., Strengbom, J., Breeuwer, A. et al. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159, 705–715 (2009). https://doi.org/10.1007/s00442-008-1261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1261-1

Keywords

Navigation