Skip to main content
Log in

Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits

  • Physiological Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Predation is a strong selective force with both direct and indirect effects on an animal’s fitness. In order to increase the chances of survival, animals have developed different antipredator strategies. However, these strategies have associated costs, so animals should assess their actual risk of predation and shape their antipredator effort accordingly. Under a stressful situation, such as the presence of predators, animals display a physiological stress response that might be proportional to the risk perceived. We tested this hypothesis in wild European rabbits (Oryctolagus cuniculus), subjected to different predator pressures, in Doñana National Park (Spain). We measured the concentrations of fecal corticosterone metabolites (FCM) in 20 rabbit populations. By means of track censuses we obtained indexes of mammalian predator presence for each rabbit population. Other factors that could modify the physiological stress response, such as breeding status, food availability and rabbit density, were also considered. Model selection based on information theory showed that predator pressure was the main factor triggering the glucocorticoid release and that the physiological stress response was positively correlated with the indexes of the presence of mammalian carnivore predators. Other factors, such as food availability and density of rabbits, were considerably less important. We conclude that rabbits are able to assess their actual risk of predation and show a threat-sensitive physiological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allier C, González Bernáldez F, Díaz Ramírez L (1974) Mapa ecológico de la reserva biológica de Doñana. CSIC, Estación Biológica de Doñana, Sevilla

    Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144

    Article  PubMed  Google Scholar 

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 79:371–394

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Carobrez SG, Gasparotto OC, Buwalda B, Bohus B (2002) Long-term consequences of social stress on corticosterone and IL-1ß levels in endotoxin-challenged rats. Phys Behav 76:99–105

    Article  CAS  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc B 271:2473–2479

    Article  PubMed  Google Scholar 

  • Cockrem JF, Silverin B (2002) Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). Gen Comp Endocrinol 125:248–255

    Article  PubMed  CAS  Google Scholar 

  • Cook CJ, Mellor DJ, Harris PJ, Ingram JR, Matthews LR (2001) Hands-on and hands-off measurement of stress. In: Moberg GP, Mench JA (eds) The biology of animal stress. Basic principles and implications for animal welfare. CABI Publishing, Oxon, pp 123–146

    Google Scholar 

  • Deviche P, Wingfield JC, Sharp PJ (2000) Year-class differences in the reproductive system, plasma prolactin and corticosterone concentrations, and onset of prebasic molt in male dark-eyed juncos (Junco hyemalis) during the breeding period. Gen Comp Endocrinol 118:425–435

    Article  PubMed  CAS  Google Scholar 

  • Dufty AM Jr, Clobert J, Møller AP (2002) Hormones, developmental plasticity and adaptation. Trends Ecol Evol 17:190–196

    Article  Google Scholar 

  • Ferrari MCO, Chivers DP (2006) Learning threat-sensitive predator avoidance: how do fathead minnows incorporate conflicting information? Anim Behav 71:19–26

    Article  Google Scholar 

  • Ferreras P, Beltrán JF, Aldama JJ, Delibes M (1997) Spatial organization and land tenure system of the endangered Iberian lynx (Lynx pardinus). J Zool 243:163–189

    Article  Google Scholar 

  • Foam PE, Harvey MC, Mirza RS, Brown GE (2005) Heads up: Juvenile convict cichlids switch to threat-sensitive foraging tactics based on chemosensory information. Anim Behav 70:601–607

    Article  Google Scholar 

  • Goymann W, Wingfield JC (2004) Allostatic load, social status and stress hormones: the costs of social status matter. Anim Behav 67:591–602

    Article  Google Scholar 

  • Goymann W, East ML, Wachter B, Höner OP, Möstl E, Van’t Hof TJ, Hofer H (2001) Social, state-dependent and environmental modulation of faecal glucocorticoid levels in free ranging female spotted hyenas. Proc R Soc B 268:2453–2459

    Article  PubMed  CAS  Google Scholar 

  • Greives TJ, Casto JM, Ketterson ED (2007) Relative abundance of males to females affects behavior, condition and immune function in a captive population of dark-eyed juncos Junco hyemalis. J Avian Biol 38:255–260

    Google Scholar 

  • Hawkins LA, Magurran AE, Armstrong JD (2007) Innate abilities to distinguish between predator species and cue concentration in Atlantic salmon. Anim Behav 73:1051–1057

    Article  Google Scholar 

  • Helfman GS (1989) Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav Ecol Sociobiol 24:47–58

    Article  Google Scholar 

  • Horat P, Semlitsch RD (1994) Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociobiol 34:393–401

    Article  Google Scholar 

  • Huber S, Palme R, Arnold W (2003) Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130:48–54

    Article  PubMed  CAS  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animal. Écoscience 5:361–394

    Google Scholar 

  • Kesavaraju B, Damal K, Juliano SA (2007) Threat-sensitive behavioral responses to concentrations of water-borne cues from predation. Ethology 113:199–206

    Article  PubMed  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (1999) Dynamics of food availability, body condition and physiological stress response in breeding black-legged kittiwakes. Funct Ecol 13:577–584

    Article  Google Scholar 

  • Kotrschal K, Hirschenhauser K, Möstl E (1998) The relationship between social stress and dominance is seasonal in greylag geese. Anim Behav 55:171–176

    Article  PubMed  Google Scholar 

  • Kraus C, Rödel HG (2004) Where have all the cavies gone? Causes and consequences of predation by the minor grison on a wild cavy population. Oikos 105:489–500

    Article  Google Scholar 

  • Kusch RC, Mirza RS, Chivers DP (2004) Making sense of predator scents: investigating the sophistication of predator assessment abilities of fathead minnows. Behav Ecol Sociobiol 55:551–555

    Article  Google Scholar 

  • Lanctot RB, Hatch SA, Gill VA, Eens M (2003) Are corticosterone levels a good indicator of food availability and reproductive performance in a kittiwake colony? Horm Behav 43:489–502

    Article  PubMed  CAS  Google Scholar 

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress–related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    Article  PubMed  CAS  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lombardi L, Fernández N, Moreno S (2007) Habitat use and spatial behaviour in the European rabbit in three Mediterranean environments. Basic Appl Ecol 8:453–463

    Article  Google Scholar 

  • Loose CJ, Dawidowicz P (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75:2255–2263

    Article  Google Scholar 

  • Mañosa S, Cordero PJ (1992) Seasonal and sexual variation in the diet of the common buzzard in Northeastern Spain. J Raptor Res 26:235–238

    Google Scholar 

  • Matteri RL, Carroll JA, Dyer CJ (2001) Neuroendocrine responses to stress. In: Moberg GP, Mench JA (eds) The biology of animal stress. Basic principles and implications for animal welfare. CABI Publishing, Oxon, pp 43–76

    Google Scholar 

  • McCullagh P, Nelder JA (1996) Generalized linear models. Monographs on statistics and applied probability 37. Chapman and Hall, London

    Google Scholar 

  • Mirza RS, Mathis A, Chivers DP (2006) Does temporal variation in predation risk influence the intensity of antipredator responses? A test of the risk allocation hypothesis. Ethology 112:44–51

    Article  Google Scholar 

  • Monclús R, Rödel HG, von Holst D, de Miguel J (2005) Behavioural and physiological responses of naive European rabbits to predator odour. Anim Behav 70:753–761

    Article  Google Scholar 

  • Monclús R, Rödel HG, Palme R, von Holst D, de Miguel J (2006a) Non-invasive measurement of the physiological stress response of wild rabbits to the odour of a predator. Chemoecology 16:25–29

    Article  CAS  Google Scholar 

  • Monclús R, Rödel HG, von Holst D (2006b) Fox odour increases vigilance in European rabbits: a study under semi-natural conditions. Ethology 112:1186–1193

    Article  Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    Article  PubMed  Google Scholar 

  • Möstl E, Meßmann S, Bagu E, Robia C, Palme R (1999) Measurement of glucocorticoid metabolite concentrations in faeces of domestic livestock. J Vet Med 46:621–632

    Article  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • Nephew BC, Romero LM (2003) Behavioral, physiological, and endocrine responses of starlings to acute increases in density. Horm Behav 44:222–232

    Article  PubMed  CAS  Google Scholar 

  • Nilsson PA, Brönmark C, Pettersson LB (1995) Benefits of a predator-induced morphology in crucian carp. Oecologia 104:291–296

    Article  Google Scholar 

  • Palme R (2005) Measuring fecal steroids. Guidelines for practical application. Ann NY Acad Sci 1046:1–6

    Article  CAS  Google Scholar 

  • Palomares F (2001) Comparison of 3 methods to estimate rabbit abundance in a Mediterranean environment. Wildl Soc Bull 29:578–585

    Google Scholar 

  • Palomares F, Delibes M (1993) Social organization in the Egyptian mongoose: group size, spatial behaviour and inter-individual contacts in adults. Anim Behav 45:917–925

    Article  Google Scholar 

  • Palomares F, Ferreras P, Travaini A, Delibes M (1998) Co-existence between Iberian lynx and Egyptian mongooses: Estimating interaction strength by structural equation modelling and testing by an observational study. J Anim Ecol 67:967–978

    Article  Google Scholar 

  • Pollock MS, Friesen RG, Pollock RJ, Kusch RC, Chivers DP (2005) The avoidance response of fathead minnows to chemical alarm cues: Understanding the effects of donor gender and breeding condition. Chemoecology 15:205–209

    Article  Google Scholar 

  • Pravosudov VV, Kitaysky AS, Wingfield JC (2001) Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). Gen Comp Endocrinol 123:324–331

    Article  PubMed  CAS  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation in predator-prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Puttlitz MH, Chivers DP, Kiesecker JM, Blaustein AR (1999) Threat-sensitive predator avoidance by larval pacific treefrogs (Amphibia, Hylidae). Ethology 105:449–456

    Article  Google Scholar 

  • Raouf SA, Smith LC, Bomberger Brown M, Wingfield JC, Brown CR (2006) Glucocorticoid hormone levels increase with group size and parasite load in cliff swallows. Anim Behav 71:39–48

    Article  Google Scholar 

  • Revilla E, Palomares F (2002) Spatial organization, group living and ecological correlates in low-density population of Eurasian badgers, Meles meles. J Anim Ecol 71:497–512

    Article  Google Scholar 

  • Rivas-Martínez S, Costa M, Castroviejo S, Valdes E (1980) Vegetación de Doñana (Huelva, España). Lazaroa 2:1–189

    Google Scholar 

  • Rödel HG, Bora A, Kaiser J, Kaetzke P, Khaschei M, von Holst D (2004a) Density dependent reproduction in the European rabbit: a consequence of individual response and age-dependent reproductive performance. Oikos 104:529–539

    Article  Google Scholar 

  • Rödel HG, Bora A, Kaetzke P, Khaschei M, Hutzelmeyer H, von Holst D (2004b) Over-winter survival in subadult European rabbits: weather effects, density dependence, and the impact of individual characteristics. Oecologia 140:566–576

    Article  PubMed  Google Scholar 

  • Rogovin K, Randall JA, Kolosova I, Moshkin M (2003) Social correlates of stress in adult males of the great gerbil, Rhombomys opimus, in years of high and low population densities. Horm Behav 43:132–139

    Article  PubMed  Google Scholar 

  • Román J, Palomares F, Revilla E, Rodríguez A, Tablado Z, López-Bao JV, d’Amico M (2006) Seguimiento científico de las actuaciones del proyecto LIFE-naturaleza Recuperación de las poblaciones de lince ibérico en Andalucía. LIFE 02NAT/8609. Final Report submitted to Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, Spain, p 94

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioural Endocrinology. MIT Press, Cambridge, pp 287–324

    Google Scholar 

  • Teplitsky C, Plénet S, Joly P (2005) Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology? Oecologia 145:364–370

    Article  PubMed  Google Scholar 

  • Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of a validation. Ann NY Acad Sci 1046:54–74

    Article  PubMed  CAS  Google Scholar 

  • Touma C, Palme R, Sachser N (2004) Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm Behav 45:10–22

    Article  PubMed  CAS  Google Scholar 

  • Touma C, Sachser N, Möstl E, Palme R (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130:267–278

    Article  PubMed  CAS  Google Scholar 

  • Veiga JP, Hiraldo F (1990) Food habits and the survival and growth of nestlings in two sympatric kites (Milvus milvus and Milvus nigrans). Holarctic Ecol 13:62–71

    Google Scholar 

  • Villafuerte R (1994) Riesgo de predación y estrategias defensivas del conejo, Oryctolagus cuniculus, en el parque nacional de Doñana. Ph.D. Thesis. University of Córdoba, Córdoba, Spain

  • von Borell E, Ladewig J (1992) Relationship between behavior and adrenocortical response pattern in domestic pigs. App Anim Behav Sci 34:195–206

    Article  Google Scholar 

  • von Holst D (1998) The concept of stress and its relevance for animal behavior. Adv Stud Behav 27:1–131

    Article  Google Scholar 

  • von Holst D, Hutzelmeyer H, Kaetzke P, Khaschei M, Schönheiter R (1999) Social rank, stress, fitness, and life expectancy in wild rabbits. Naturwissenschaften 86:388–393

    Article  Google Scholar 

  • Wallage-Drees JM (1989) A field study of seasonal changes in Circardian activity of rabbits. Z Säugetierk 54:22–30

    Google Scholar 

  • Weingrill T, Gray DA, Barrett L, Henzi SP (2004) Fecal corticosteroid levels in free-ranging female chacma baboons: Relationships to dominance, reproductive state and environmental factors. Horm Behav 45:259–269

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC (2005) The concept of allostasis: coping with a capricious environment. J Mamm 86:248–254

    Article  Google Scholar 

  • Zapata SC, Travaini A, Ferreras P, Delibes M (2007) Analysis of trophic structure of two carnivore assemblages by means of guild identification. Eur J Wildl Res 53:276–286

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to J.C. Rivilla, J. Román, and several students, C. Estabillo, J.M. Clavijo, and J. Martínez for their help with the field work and Edith Klobetz-Rassam for assistance on the analysis of the fecal samples. Heiko G. Rödel and Eloy Revilla gave valuable comments on earlier drafts of the manuscript. Jörg Ganzhorn and two anonymous reviewers greatly improved the manuscript. This research was partially funded by the projects CGL2004-00346/BOS of the Spanish Ministry of Education and Science and the Caixa Foundation. The Consejería de Medio Ambiente Junta de Andalucía built the rabbit enclosures under the LIFE 02NAT/8609 conservation program. Land Rover España S.A. provided the four-wheel vehicles used during this study. Z. Tablado was supported by a FPU scholarship from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Monclús.

Additional information

Communicated by Jörg Ganzhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monclús, R., Palomares, F., Tablado, Z. et al. Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecologia 158, 615–623 (2009). https://doi.org/10.1007/s00442-008-1201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1201-0

Keywords

Navigation