Skip to main content

Advertisement

Log in

Higher masseter muscle mass in grazing than in browsing ruminants

  • Physiological Physiology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Using cranioskeletal measurements, several studies have generated evidence that grazing ruminants have a more pronounced mastication apparatus, in terms of muscle insertion areas and protuberances, than browsing ruminants, with the resulting hypothesis that grazers should have larger, heavier chewing muscles than browsers. However, the only investigation of this so far [Axmacher and Hofmann (J Zool 215:463–473, 1988)] did not find differences between ruminant feeding types in the masseter muscle mass of 22 species. Here, we expand the dataset to 48 ruminant species. Regardless of phylogenetic control in the statistical treatment, there was a significant positive correlation of body mass and masseter mass, and also a significant association between percent grass in the natural diet and masseter mass. The results support the concept that ruminant species that ingest more grass have relatively larger masseter muscles, possibly indicating an increased requirement to overcome the resistance of grass forage. The comparative chewing resistance of different forage classes may represent a rewarding field of ecophysiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andanje SA, Ottichilo WK (1999) Population status and feeding habits of the translocated subpopulation of Hunter’s antelope or hirola (Beatragus hunteri) in Tsavo East National Park, Kenya. Afr J Ecol 37:38–48

    Article  Google Scholar 

  • Axmacher H, Hofmann RR (1988) Morphological characteristics of the masseter muscle of 22 ruminant species. J Zool 215:463–473

    Article  Google Scholar 

  • Bigalke RC (1972) Observations on the behavior and feeding habits of the springbok (Antidorcas marsupialis). Zool Afr 7:333–359

    Google Scholar 

  • Branan WV, Werkhoven MCM, Marchinton RL (1985) Food habits of brocket and white-tailed deer in Suriname. J Wildl Manage 49:972–976

    Article  Google Scholar 

  • Caswell H, Reed F, Stephenson SN, Werner PA (1973) Photosynthetic pathways and selctive herbivory: a hypothesis. Am Nat 107:465–480

    Article  CAS  Google Scholar 

  • Clauss M, Lechner-Doll M, Streich WJ (2003) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262

    Article  Google Scholar 

  • Clauss M, Hofmann RR, Hummel J, Adamczewski J, Nygren K, Pitra C, Reese S (2006) The macroscopic anatomy of the omasum of free-ranging moose (Alces alces) and muskoxen (Ovibos moschatus) and a comparison of the omasal laminal surface area in 34 ruminant species. J Zool 270:346–358

    Article  Google Scholar 

  • Clauss M, Kaiser T, Hummel J (2008) The morphophysiological adaptations of browsing and grazing mammals. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Heidelberg, pp 47–88

    Google Scholar 

  • Codron D, Codron J, Lee-Thorp JA, Sponheimer M, de Ruiter D, Sealy J, Grant R, Fourie N (2007a) Diets of savanna ungulates from stable carbon isotope composition of faeces. J Zool 273:21–29

    Article  Google Scholar 

  • Codron D, Lee-Thorp JA, Sponheimer M, Codron J, de Ruiter D, Brink JS (2007b) Significance of diet type and diet quality for ecological diversity of African ungulates. J Anim Ecol 76:526–537

    Article  PubMed  Google Scholar 

  • Codron D, Brink JS, Rossouw L, Clauss M (2008a) The evolution of ecological specialization in southern African ungulates: competition or physical environmental turnover? Oikos 117:344–353

    Article  Google Scholar 

  • Codron D, Brink JS, Rossouw L, Clauss M, Codron J, Lee-Thorp JA, Sponheimer M (2008b) Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biol J Linn Soc (in press)

  • Coleman SW, Hart SP, Sahlu T (2003) Relationships among forage chemistry, rumination and retention time with intake and digestibility of hay by goats. Small Ruminant Res 50

  • Cornelissen JHC, Thompson K (1997) Functiona leaf attributes predict litter decomposition rate in herbacous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Dhungel SK, O’Gara BW (1991) Ecology of the hog deer in Royal Chitwan National Park, Nepal. Wildl Monogr 119:1–40

    Google Scholar 

  • Du Plessis SS (1972) Ecology of blesbok with special reference to productivity. Wildl Monogr 30:1–70

    Google Scholar 

  • Dubost G (1984) Comparsion of the diets of frugivorous forest ruminants of Gabon. J Mammal 65:298–316

    Article  Google Scholar 

  • Endo H, Kimura J, Sasaki M, Matsuzaki M, Matsubayashi H, Tanaka K, Fukuta K (2002) Functional morphology of the mastication muscles in the lesser and greater mouse deer. J Vet Med Sci 64:901–905

    Article  PubMed  Google Scholar 

  • Fernandez MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302

    Article  Google Scholar 

  • Ferreira NA, Bigalke RC (1987) Food selection by grey rhebuck in the Orange Free State. S Afr J Wildl Res 17:123–127

    Google Scholar 

  • Fortelius M (1985) The functional significance of wear induced change in the occlusal morphology of herbivore cheek teeth, exemplified by Dicerorhinus etruscus upper molars. Acta Zool Fenn 170:157–158

    Google Scholar 

  • Gagnon M, Chew AE (2000) Dietary preferences in extant African bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  • Geist V (1999) Deer of the world. Their evolution, behaviour, and ecology. Swan Hill Press, Shrewsbury, UK

  • Gordon IJ, Illius AW (1994) The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia 98:167–175

    Article  Google Scholar 

  • Grobler JH (1974) Aspects of the biology, population ecology and behaviour of the sable (Hippotragus niger) in the Rhodes Matopos National Park, Rhodesia. Arnold Rhod 7:1–36

    Google Scholar 

  • Heckathorn SA, McNaughton SJ, Coleman JS (1999) C4 plants and herbivory. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 285–312

    Chapter  Google Scholar 

  • Heinichen IG (1972) Preliminary notes on the suni (Neotragus moschatus) and the red duiker (Cephalophus natalensis). Zool Afr 7:157–165

    Google Scholar 

  • Hendrichs H (1965) Vergleichende Untersuchung des Wiederkauverhaltens. Biol Zent Bl 84:681–751

    Google Scholar 

  • Henry DA, Simpson RJ, Macmillan RH (1997) Intrinsic shear strngth of leaves of pasture grasses. Aust J Agric Res 48:667–674

    Article  Google Scholar 

  • Heptner VG, Nasimowitsch AA, Bannikov AG (1989) Mammals of the Sowiet Union, vol 1. Brill, Leiden

    Google Scholar 

  • Hofmann RR (1988) Morphophysiological evolutionary adaptations of the ruminant digestive system. In: Dobson A, Dobson MJ (eds) Aspects of digestive physiology in ruminants. Cornell University Press, Ithaca, pp 1–20

    Google Scholar 

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457

    Article  Google Scholar 

  • Hofmann RR (1991) Endangered tropical herbivores—their nutritional requirements and habitat demands. In: Ho YW, Wong HK, Abdullah N, Tajuddin ZA (eds) Recent advances on the nutrition of herbivores. Malaysia Society of Animal Production. UPM, Serdang, pp 27–34

    Google Scholar 

  • Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habit of East African ruminants. Mammalia 36:226–240

    Article  Google Scholar 

  • Hofmann RR, Knight MH, Skinner JD (1995) On structural characteristics and morphophysiological adaptation of the springbok (Antidorcas marsupialis) digestive system. Trans R Soc S Afr 50:125–142

    Google Scholar 

  • Hofmann RR (1999) Functional and comparative digestive system anatomy of Arctic ungulates. Rangifer 20:71–81

    Google Scholar 

  • Hofmann RR, Streich WJ, Fickel J, Hummel J, Clauss M (2008) Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphol 269:240–257

    Article  PubMed  Google Scholar 

  • Janis CM (1990) Correlation of cranial and dental variables with dietary preferences in mammals: a comparison of macropidoids and ungulates. Mem Queensl Mus 28:349–366

    Google Scholar 

  • Janis CM (1995) Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, New York, pp 76–98

    Google Scholar 

  • Kiplel MN (1981) The topography and functional anatomy of the masticatory muscles in seven ruminant species of the intermediate feeding type. MSc thesis, University of Nairobi

  • Lanave C, Preparata G, Sacone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  PubMed  CAS  Google Scholar 

  • Lobao Tello JL, van Gelder RG (1975) The natural history of nyala (Tragelaphus angasi) in Mozambique. Bull Am Mus Nat His 155:319–386

    Google Scholar 

  • Martins E (2004) COMPARE, version 4.6. Computer programs for the statistical analysis of comparative data. Distributed by the author at http://www.compare.bio.indiana.edu/. Department of Biology, Indiana University, Bloomington

  • Martins E, Hansen T (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Mendoza M, Palmqvist P (2006) Characterizing adaptive morphological patterns related to diet in bovidae. Acta Zool Sin (in press)

  • Mendoza M, Janis CM, Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool 258:223–246

    Article  Google Scholar 

  • Moseley G, Jones JR (1984) The physical digestion of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) in the foregut of sheep. Br J Nutr 52:381–390

    Article  PubMed  CAS  Google Scholar 

  • Nakamura YN, Iwamoto H, Etoh T, Shiotsuka Y, Yamaguchi T, Ono Y, Tabata S, Nishimura S, Gotoh T (2007) Three-dimensional observation of connective tissue of bovine masseter muscle under concentrate- and roughage-fed conditions by using immunohistochemical/confocal laser-scanning microscopic methods. J Food Sci 72:E375–E381

    Article  PubMed  CAS  Google Scholar 

  • Nordin M (1978) Voluntary food intake and digestion by the lesser mousedeer. J Wildl Manage 42:185–186

    Article  Google Scholar 

  • Owen REA (1970) Some observations on the sitatunga in Kenya. East Afr Wildl J 8:181–195

    Google Scholar 

  • Owen-Smith N (1997) Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Z Säugetierkd 62(Suppl 2):176–191

    Google Scholar 

  • Paul C, Mika V (1981) Mahlwiderstandsmessungen an Rauhfutter. II. Beziehungen zwischen Mahlwiderstand und Futterwertmerkmalen. Landbauforschung Völkenrode 31:163–169

    Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (2005) Gregariousness increases brain size in ungulates. Oecologia 145:41–52

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ, Illius A (2001) Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129:498–508

    Google Scholar 

  • Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc R Soc Lond B 271:1081–1090

    Article  Google Scholar 

  • Pitra C, Fickel J, Meijaard E, Groves PC (2004) Evolution and phylogeny of old world deer. Mol Phylogenet Evol 33:880–895

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Purvis A, Garland T (1993) Polytomies in comparative analyses of continous characters. Syst Biol 42:569–575

    Article  Google Scholar 

  • Ramisch W (1978) Topographie und funktionelle Anatomie der Kaumuskeln und der Speicheldrüsen des Rehes (Capreolus capreolus). Dissertation thesis, University of Giessen

  • Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  PubMed  CAS  Google Scholar 

  • Rohlf F (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    PubMed  CAS  Google Scholar 

  • Sanson GD (1989) Morphological adaptations of teeth to diets and feeding in the macropodoidea. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, wallabies and rat-kangaroos. Surrey-Beatty, Sydney, pp 151–168

    Google Scholar 

  • Sasaki M, Endo H, Kogiku H, Kitamura N, Yamada J, Yamamoto M, Arishima K, Hayashi Y (2001) The structure of the masseter muscle in the giraffe (Giraffa camelopardalis). Anat Histol Embryol 30:313–319

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREEPUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Solounias N, Dawson-Saunders B (1988) Dietary adaptations and palaecology of the late Miocene ruminants from Pikermi and Samos in Greece. Palaeogeogr Palaeoclimatol Palaeoecol 65:149–172

    Article  Google Scholar 

  • Solounias N, Moelleken SMC (1999) Dietary determination of extinct bovids through cranial foraminal analysis, with radiographic applications. Ann Mus Goulandris 10:267–290

    Google Scholar 

  • Solounias N, Moelleken S, Plavcan J (1995) Predicting the diet of extinct bovids using masseteric morphology. J Vertebr Paleontol 15:795–805

    Google Scholar 

  • Sponheimer M, Lee-Thorp JA, DeRuiter D, Smith JM, Van der Merwe NJ, Reed K, Grant CC, Ayliffe LK, Robinson TF, Heidelberger C, Marcus W (2003) Diets of Southern African bovidae: stable isotope evidence. J Mammal 84:471–479

    Article  Google Scholar 

  • Stöckmann W (1979) Differences in the shape of the mandibles of African bovidae in relation to food composition. Zool Jahrbüch Syst 106:344–373

    Google Scholar 

  • Stubbe C (1971) Zur Ernährung des Muffelwildes (Ovis ammon musimon) in der DDR. Beitr Jagd Wildforschung 7:103–125

    Google Scholar 

  • Sudweeks EM, Ely LO, Mertens DR, Sisk LR (1981) Assessing minimum amounts and form of roughages in ruminant diets: roughage value index system. J Anim Sci 53:1406–1411

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analyses using parsimony (and other methods), version 4.0 beta. Smithsonian Institition, Washington DC

    Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 15:4876–4882

    Article  Google Scholar 

  • Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana. Geology 18:147–356

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. Cornell University Press, Ithaca

    Google Scholar 

  • Van Wieren SE (1996) Browsers and grazers: foraging strategies in ruminants. In: Van Wieren SE (ed) Digestive strategies in ruminants and nonruminants. Thesis landbouw. University of Wageningen, Wageningen, pp 119–146

    Google Scholar 

  • Waghorn GC, Shelton ID, Thomas VJ (1989) Particle breakdown and rumen digestion of fresh ryegrass (Lolium perenne) and lucerne (Medicago sativa) fed to cows during a restricted feeding period. Br J Nutr 61:409–423

    Article  PubMed  CAS  Google Scholar 

  • Wilman D, Derrick RW, Moseley G (1997) Physical breakdown of chickweed, dandelion, dock, ribwort, spurrey and perennial ryegrass when eaten by sheep and when macerated. J Agric Sci 129:419–428

    Article  Google Scholar 

  • Wilson JR, Kennedy PM (1996) Plant and animal constraints to voluntary feed intake associated with fibre characteristics and particle breakdown and passage in ruminants. Aust J Agric Res 47:199–125

    Article  Google Scholar 

Download references

Acknowledgements

We thank the numerous hunters and zoological institutions that helped collecting material. M. C. particularly thanks Nadia Robert and Christian Wenker for the provision of giraffid material and J. C. Castell for assistance at dissections, D. Jäger for support in literature review, and B. Schneider for support in literature acquisition. Norman Owen-Smith kindly provided the data collection from his 1997 publication. We thank Atle Mysterud and one anonymous reviewer for helpful comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Clauss.

Additional information

Communicated by Jean-Michel Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauss, M., Hofmann, R.R., Streich, W.J. et al. Higher masseter muscle mass in grazing than in browsing ruminants. Oecologia 157, 377–385 (2008). https://doi.org/10.1007/s00442-008-1093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1093-z

Keywords

Navigation