Skip to main content
Log in

Do distances among host patches and host density affect the distribution of a specialist parasitoid?

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The effect of spatial habitat structure and patchiness may differ among species within a multi-trophic system. Theoretical models predict that species at higher trophic levels are more negatively affected by fragmentation than are their hosts or preys. The absence or presence of the higher trophic level, in turn, can affect the population dynamics of lower levels and even the stability of the trophic system as a whole. The present study examines different effects of spatial habitat structure with two field experiments, using as model system the parasitoid Cotesia popularis which is a specialist larval parasitoid of the herbivore Tyria jacobaeae. One experiment examines the colonisation rate of the parasitoid and the percentage parasitism at distances occurring on a natural scale; the other experiment examines the dispersal rate and the percentage parasitism in relation to the density of the herbivore and its host plant. C. popularis was able to reach artificial host populations at distances up to the largest distance created (at least 80 m from the nearest source population). Also, the percentage parasitism did not differ among the distances. The density experiment showed that the total number of herbivores parasitised was higher in patches with a high density of hosts, regardless of the density of the host plant. The percentage parasitism, however, was not related to the density of the host. The density of the host plant did have a (marginally) significant effect on the percentage parasitism, probably indicating that the parasitoid uses the host plant of the herbivore as a cue to find the herbivore itself. In conclusion, the parasitoid was not affected by the spatial habitat structure on spatial scales that are typical of local patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Amarasekare P (2000) Spatial dynamics in a host-multiparasitoid community. J Animal Ecol 69:201–213

    Article  Google Scholar 

  • Brunzel S, Elligsen H, Frankl R (2004) Distribution of the Cinnabar moth Tyria jacobaeae L. at landscape scale: use of linear landscape structures in egg laying on larval hostplant exposures. Landscape Ecol 19:21–27

    Article  Google Scholar 

  • Cameron E (1935) A study of the natural control of Ragwort (Senecio jacobaea L.). J Ecol 23:265–322

    Article  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant-population dynamics. Annu Rev Entomol 34:531–564

    Article  Google Scholar 

  • Cronin JT (2003a) Matrix heterogeneity and host-parasitoid interactions in space. Ecology 84:1506–1516

    Article  Google Scholar 

  • Cronin JT (2003b) Patch structure, oviposition behavior, and the distribution of parasitism risk. Ecol Monograph 73:283–300

    Article  Google Scholar 

  • Cronin JT, Strong DR (1999) Dispersal-dependent oviposition and the aggregation of parasitism. Am Nat 154:23–36

    Article  Google Scholar 

  • Dempster JP (1971) Population ecology of Cinnabar Moth, Tyria jcobaeae L (Lepidoptera, Arctiidae). Oecologia 7:26–67

    Article  Google Scholar 

  • Dempster JP (1982) The ecology of the Cinnabar Moth, Tyria jacobaeae L (Lepidoptera, Arctiidae). Adv Ecol Res 12:1–36

    Article  Google Scholar 

  • Desouhant E, Driessen G, Lapchin L, Wielaard S, Bernstein C (2003) Dispersal between host populations in field conditions: navigation rules in the parasitoid Venturia canescens. Ecol Entomol 28:257–267

    Article  Google Scholar 

  • Doak P (2000) The effects of plant dispersion and prey density on parasitism rates in a naturally patchy habitat. Oecologia 122:556–567

    Article  Google Scholar 

  • Doutt RL (1959) The biology of parasitic hymenoptera. Annu Rev Entomol 4:161–182

    Article  Google Scholar 

  • Dubbert M, Tscharntke T, Vidal S (1998) Stem-boring insects of fragmented calamagrostis habitats: herbivore-parasitoid community structure and the unpredictability of grass shoot abundance. Ecol Entomol 23:271–280

    Article  Google Scholar 

  • Elzinga JA (2005) Effects of habitat fragmentation on a tri-trophic system: Silene latifolia,Hadena bicruris and its parasitoids. In: Nederlands Instituut voor Ecologie (NIOO-KNAW), Heteren. University Utrecht

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Harrison S, Thomas CD, Lewinsohn TM (1995) Testing a metapopulation model of coexistence in the insect community on ragwort (Senecio jcobaea). Am Nat 145:546–562

    Article  Google Scholar 

  • Hassell MP, Southwood TRE, Reader PM (1987) The dynamics of the viburnum whitefly (Aleurotrachelus jelinekii)—a case-study of population regulation. J Animal Ecol 56:283–300

    Article  Google Scholar 

  • Hassell MP, May RM, Pacala SW, Chesson PL (1991) The persistence of host-parasitoid associations in patchy environments. I. A general criterion. Am Nat 138:568–583

    Article  Google Scholar 

  • Heads PA, Lawton JH (1983) Studies on the natural enemy complex of the holly leaf-miner - the effects of scale on the detection of aggregative responses and the implications for biological-control. Oikos 40:267–276

    Article  Google Scholar 

  • Holt RD (1996) Food webs in space; an island biogeographical perspective. In: PG S, WK O (eds) Food webs. Chapman Hall, New York, pp 313–323

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator prey interactions. Nature 326:388–390

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat Fragmentation, Species Loss, and Biological-Control. Science 264:1581–1584

    Article  PubMed  Google Scholar 

  • Langhof M, Meyhofer R, Poehling HM, Gathmann A (2005) Measuring the field dispersal of Aphidius colemani (Hymenoptera : Braconidae). Agri Ecosyst Environ 107:137–143

    Article  Google Scholar 

  • Lei GC, Hanski I (1997) Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia. Oikos 78:91–100

    Article  Google Scholar 

  • Lempke BJ (1962) Insecten gevangen op het lichtschip "Noord Hinder". Ent Ber Amst 22:101–111

    Google Scholar 

  • Liljesthrom GG, Virla EG (2004) Density-dependent parasitism of Delphacodes kuscheli eggs by Anagrus flaveolus: influence of egg patchiness and density. Biocontrol Sci Technol 14:107–115

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • McEvoy PB, Rudd NT, Cox CS, Huso M (1993) Disturbance, competition, and herbivory effects on ragwort Senecio jacobaea populations. Ecol Monograph 63:55–75

    Article  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Roy Stat Soc A 135:370–384

    Article  Google Scholar 

  • Norowi HM, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196

    Article  Google Scholar 

  • Ohsaki N, Sato Y (1990) Avoidance mechanisms of 3 pieris butterfly species against the parasitoid wasp Apanteles glomeratus. Ecol Entomol 15:169–176

    Article  Google Scholar 

  • Ray C, Hastings A (1996) Density dependence: are we searching at the wrong spatial scale? J Animal Ecol 65:556–566

    Article  Google Scholar 

  • Reeve JD, Murdoch WW (1985) Aggregation by parasitoids in the successful control of the california red scale—a test of theory. J Animal Ecol 54:797–816

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–713

    Article  CAS  Google Scholar 

  • Rosenheim JA, Mangel M (1994) Patch-leaving rules for parasitoids with imperfect host discrimination. Ecol Entomol 19:374–380

    Article  Google Scholar 

  • Rudd NT, McEvoy PB (1996) Local dispersal by the cinnabar moth Tyria jacobaeae. Ecol Appl 6:285–297

    Article  Google Scholar 

  • Sallam MN, Overholt WA, Kairu E (2001) Dispersal of the exotic parasitoid Cotesia flavipes in a new ecosystem. Entomol Exp Appl 98:211–217

    Article  Google Scholar 

  • Sheehan W, Shelton AM (1989) Parasitoid response to concentration of herbivore food plants—finding and leaving plants. Ecology 70:993–998

    Article  Google Scholar 

  • Soldaat LL (1991) Seasonal-variation in parasitoid attack of Tyria jacobaeae by Apanteles popularis. Netherlands J Zool 41:194–201

    Article  Google Scholar 

  • Stang M, Klinkhamer PGL, Van der Meijden E (2005) Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos

  • Stiling PD (1987) The frequency of density dependence in insect host parasitoid systems. Ecology 68:844–856

    Article  Google Scholar 

  • Stireman JO, Singer MS (2002) Spatial and temporal variation in the parasitoid assemblage of an exophytic polyphagous caterpillar. Ecol Entomol 27:588–600

    Article  Google Scholar 

  • Strong DR (1988) Parasitoid theory—from aggregation to dispersal. Trends Ecol Evol 3:277–280

    Article  Google Scholar 

  • Teder T, Tanhuanpaa M, Ruohomaki K, Kaitaniemi P, Henriksson J (2000) Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth. Oecologia 123:516–524

    Article  Google Scholar 

  • Umbanhowar J, Maron J, Harrison S (2003) Density-dependent foraging behaviors in a parasitoid lead to density-dependent parasitism of its host. Oecologia 137:123–130

    Article  PubMed  Google Scholar 

  • Van der Meijden E, De Jong T, Klinkhamer PGL, Kooi RE (1985) Temporal and spatial dynamics in populations of biennial plants. In: Haeck J, Woldendorp JW (eds) Structure and functioning of plant populations, vol (2), pp 91–103

  • Van der Meijden E (1979) Herbivore exploitation of a fugitive plant species: local survival and extinction of the Cinnabar Moth and Ragwort in a heterogeneous environment. Oecologia 42:307–323

    Google Scholar 

  • Van der Meijden E (1980) Can hosts escape from their parasitoids—the effects of food shortage on the braconid parasitoid Apanteles popularis and its host Tyria jacobaeae. Netherlands J Zool 30:382–392

    Article  Google Scholar 

  • Van der Meijden E, Van der Veen-Van Wijk CAM (1997) Tritrophic metapopulation dynamics—a case study of ragwort, the Cinnabar moth, and the parasitoid Cotesia popularis. In: Metapopulation biology. Academic, New York, pp 387–405

  • Van der Meijden E, Van Wijk CAM, Kooi RE (1991) Population-dynamics of the Cinnabar Moth (Tyria jacobaeae)—oscillations due to food limitation and local extinction risks. Netherlands J Zool 41:158–173

    Article  Google Scholar 

  • Van der Meijden E, Nisbet RM, Crawley MJ (1998) Dynamics of a herbivore-plant interaction, the cinnabar moth and ragwort. In: Dempster JP, McLean LEG (eds) Insect populations. Kluwer, Dordrecht, pp 291–308

    Google Scholar 

  • Van Nouhuys S, Hanski I (2002) Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. J Animal Ecol 71:639–650

    Article  Google Scholar 

  • Waage JK (1983) Aggregation in field parasitoid populations—foraging time allocation by a population of diadegma (Hymenoptera, Ichneumonidae). Ecol Entomol 8:447–453

    Article  Google Scholar 

  • Walde SJ, Murdoch WW (1988) Spatial density dependence in parasitoids. Annu Rev Entomol 33:441–466

    Article  Google Scholar 

  • Walker KR, Welter SC (2004) Biological control potential of Apanteles aristoteliae (Hymenoptera : Braconidae) on populations of Argyrotaenia citrana (Lepidoptera : Tortricidae) in California apple orchards. Environ Entomol 33:1327–1334

    Article  Google Scholar 

  • Williams CB, Cockbill GG, Gibbs ME, Downes JA (1942) Studies in the migration of Lepidoptera. Trans R ent Soc London 92:101–283

    Google Scholar 

  • Zabel J, Tscharntke T (1998) Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116:419–425

    Article  Google Scholar 

  • Zschokke S et al (2000) Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the people who helped during the field work: Joep Bovenlander, Cilke van Dijke, Hans de Heiden, Gera Hol, Kees Koops, Grazyna Korbecka, Henk Nell, Robert Thomson, and Karin van der Veen-van Wijk. S. Esch was supported by a grant from the Stimulation Programme Biodiversity of the Earth and Life Science Foundation (ALW) of the Netherlands Organisation for Scientific Research (NWO). We thank Klaas Vrieling and two anonymous reviewers for commenting on earlier versions of this paper, and we also thank Martin Brittijn for drawing the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Esch.

Additional information

Communicated by Roland Brandl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esch, S., Klinkhamer, P.G.L. & Meijden, E.v.d. Do distances among host patches and host density affect the distribution of a specialist parasitoid?. Oecologia 146, 218–226 (2005). https://doi.org/10.1007/s00442-005-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0214-1

Keywords

Navigation