Skip to main content
Log in

Persistent maternal identity effects on life history traits in Daphnia

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The aim of the present study was to examine the magnitude and persistence of maternal effects in Daphnia, in particular maternal identity effects. I studied life history traits of a single clone of Daphnia galeata born to 40 different mothers belonging to three age groups. Maternal identity had large effects on offspring traits, that is, identically treated clonal females differed substantially in respect to the traits of their offspring, including size at birth, age at maturity, and number of second generation offspring. The effects of maternal identity on these traits were largely independent of maternally induced differences in offspring size, indicating that maternal effects were mediated through offspring quality. Maternal age also affected offspring traits: older mothers gave birth to larger offspring which matured earlier, were larger and more fecund, and survived better until maturity. Individuals which were larger at birth also had a better chance of survival. Contrary to expectation, I found little evidence that maternal identity or maternal age had any influence on their offsprings’ response to fish kairomones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barata C, Baird DJ (1998) Phenotypic plasticity and constancy of life-history traits in laboratory clones of Daphnia magna Straus: effects of neonatal length. Funct Ecol 12:442–452

    Article  Google Scholar 

  • Boersma M (1997) Offspring size and parental fitness in Daphnia magna. Evol Ecol 11:439–450

    Article  Google Scholar 

  • Brett MT (1993) Resource quality effects on Daphnia longispina offspring fitness. J Plankton Res 15:403–412

    Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35

    Google Scholar 

  • Cleuvers M, Goser B, Ratte HT (1997) Life-strategy shift by intraspecific interaction in Daphnia magna: change in reproduction from quantity to quality. Oecologia 110:337–345

    Article  Google Scholar 

  • Dudycha JL, Tessier AJ (1999) Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia. Evolution 53:1744–1756

    Google Scholar 

  • Ebert D (1991) The effect of size at birth, maturation threshold and genetic differences on the life-history of Daphnia magna. Oecologia 86:243–250

    Google Scholar 

  • Ebert D (1993) The trade-off between offspring size and number in Daphnia magna: The influence of genetic, environmental and maternal effects. Arch Hydrobiol [Suppl] 90:453–473

  • Ebert D (1994) A maturation size threshold and phenotypic plasticity of age and size at maturity in Daphnia magna. Oikos 69:309–317

    Google Scholar 

  • Ebert D (1997) The evolution and genetics of maturation in Daphnia. In: Streit B, Städler T, Lively CM (eds) Evolutionary ecology of freshwater animals. Birkhäuser, Basel, pp 152–178

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369

    CAS  PubMed  Google Scholar 

  • Glazier DS (1992) Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73:910–926

    Google Scholar 

  • Gliwicz ZM, Guisande C (1992) Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia 91:463–467

    Google Scholar 

  • Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species grown at different food levels. J Plankton Res 14:997–1007

    Google Scholar 

  • Hercus MJ, Hoffmann AA (2000) Maternal and grandmaternal age influence offspring fitness in Drosophila. Proc R Soc Lond B Biol Sci 267:2105–2110

    CAS  PubMed  Google Scholar 

  • Kern S, Ackermann M, Stearns SC, Kawecki TJ (2001) Decline in offspring viability as a manifestation of aging in Drosophila melanogaster. Evolution 55:1822–1831

    CAS  PubMed  Google Scholar 

  • Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746

    Article  Google Scholar 

  • LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71

    Article  Google Scholar 

  • Lampert W (1993) Phenotypic plasticity of the size at first reproduction in Daphnia—the importance of maternal size. Ecology 74:1455–1466

    Google Scholar 

  • LogXact 4 (1999) Software for exact logistic regression. Cytel Software, Cambridge, Mass.

  • Lynch M (1980) The evolution of cladoceran life histories. Q Rev Biol 55:23–42

    Google Scholar 

  • Lynch M (1985) Spontaneous mutations for life history characters in an obligate parthenogen. Evolution 39:804–818

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass.

  • McIntyre GS, Gooding RH (2000) Egg size, contents, and quality: maternal-age and -size effects on house fly eggs. Can J Zool 78:1544–1551

    Article  Google Scholar 

  • McKee D, Ebert D (1996) The interactive effects of temperature, food level and maternal phenotype of offspring size in Daphnia magna. Oecologia 107:189–196

    Google Scholar 

  • Mousseau TA, Fox CW (eds) (1998) Maternal effects as adaptations. Oxford University Press, Oxford

  • Reede T (1997) Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphnia hyalina x galeata to fish kairomones. Freshw Biol 37:389–396

    Article  Google Scholar 

  • Rossiter MC (1996) Incidence and consequences of inherited environmental effects. Annu Rev Ecol Syst 27:451–476

    Article  Google Scholar 

  • Sakwińska O (2002) Response to fish kairomone in Daphnia galeata life history traits relies on shift to earlier instar at maturation. Oecologia 131:409–417

    Article  Google Scholar 

  • SAS (1993) SAS/STAT, Version 6.06. SAS Institute, Cary, N.C.

  • Schwaegerle KE, McIntyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution 54:452–461

    CAS  PubMed  Google Scholar 

  • Stibor H (1992) Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92:162–165

    Google Scholar 

  • Tessier AJ, Consolatti NL (1989) Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56:269–276

    Google Scholar 

  • Tessier AJ, Consolatti NL (1991) Resource quantity and offspring quality in Daphnia. Ecology 72:468–478

    Google Scholar 

  • Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford

  • Weider LJ, Pijanowska J (1993) Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67:385–392

    Google Scholar 

  • Wolf JB, Brodie ED, Moore AJ (1999) The role of maternal and paternal effects in the evolution of parental quality by sexual selection. J Evol Biol 12:1157–1167

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dieter Ebert for hosting me in his laboratory and sharing Daphnia life history expertise. Kerstin Bitter helped me to get the experimental animals. I am grateful to Dita Vizoso for her assistance in the laboratory, and Tadeusz Kawecki for help with statistical analyses. Steve Stearns, Tadeusz Kawecki, Dieter Ebert, Ian Sanders, and two anonymous referees provided critical comments which helped me to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Sakwińska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakwińska, O. Persistent maternal identity effects on life history traits in Daphnia . Oecologia 138, 379–386 (2004). https://doi.org/10.1007/s00442-003-1434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1434-x

Keywords

Navigation