Skip to main content

Advertisement

Log in

Loss of Nucleobindin-2/Nesfatin-1 increases lipopolysaccharide-induced murine acute lung inflammation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

NUCB2/nesfatin-1 is expressed in variety of tissues. Treatment with nesfatin-1 reduces inflammation in rat models of subarachnoid hemorrhage-induced oxidative brain damage and traumatic brain injury as well as myocardial injury. There is only one study showing anti-inflammatory actions of nesfatin-1 on acute lung inflammation. To more precisely determine the role of NUCB2/nesfatin-1 in acute lung inflammation, we conducted a study using NUCB2/nesfatin-1 knockout (NKO) mice as well as neutrophils isolated from the bone marrows of WT and NKO mice. Our findings suggest that the absence of NUCB2/nesfatin-1 significantly increases the accumulation of adherent neutrophils by approximately 3 times compared with WT within LPS-treated lungs. Integrating this with observations from both BALF and neutrophil cytokine expression, we propose that although neutrophils lacking NUCB2/nesfatin-1 individually secrete less pro-inflammatory cytokines compared with stimulated WT cells, the result of knocking out NUCB2/nesfatin-1 is net pro-inflammatory. No change was found in NUCB2/nesfatin-1 mRNA or protein expression comparing WT LPS and PBS-treated samples. Taken together, our results show that NUCB2/nesfatin-1 is constitutively expressed in mouse lungs and neutrophils and demonstrates anti-inflammatory properties in mouse lungs during acute lung injury, by inhibiting adherent neutrophil accumulation and inflammatory cytokine expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bohmer RH, Trinkle LS, Staneck JL (1992) Dose effects of LPS on neutrophils in a whole blood flow cytometric assay of phagocytosis and oxidative burst. Cytometry 13:525–531

    Article  CAS  Google Scholar 

  • Cabanski M, Steinmuller M, Marsh LM, Surdziel E, Seeger W, Lohmeyer J (2008) PKR regulates TLR2/TLR4-dependent signaling in murine alveolar macrophages. Am J Respir Cell Mol Biol 38:26–31

    Article  CAS  Google Scholar 

  • Cao C, Chai Y, Shou S, Wang J, Huang Y, Ma T (2018) Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction. Int Immunopharmacol 54:169–176

    Article  CAS  Google Scholar 

  • Chen D, Cao S, Chang B, Ma T, Gao H, Tong Y, Li T, Han J, Yi X (2019) Increasing hypothalamic nucleobindin 2 levels and decreasing hypothalamic inflammation in obese male mice via diet and exercise alleviate obesity-associated hypogonadism. Neuropeptides 74:34–43

    Article  CAS  Google Scholar 

  • Chung Y, Jung E, Kim H, Kim J, Yang H (2013) Expression of nesfatin-1/NUCB2 in fetal, neonatal and adult mice. Dev Reprod 17:461–467

    Article  Google Scholar 

  • Doerschuk C (2000) Leukocyte trafficking in alveoli and airway passages. Respir Res 1:136–140

    Article  CAS  Google Scholar 

  • Eltom S, Belvisi MG, Yew-Booth L, Dekkak B, Maher SA, Dubuis ED, Jones V, Fitzgerald KA, Birrell MA (2014) TLR4 activation induces IL-1beta release via an IPAF dependent but caspase 1/11/8 independent pathway in the lung. Respir Res 15:87

    Article  Google Scholar 

  • He Y, Zhao Y, Feng Y, Ren A, Zhang Y, Wang Y, Li H (2020) Therapeutic effect and mechanism study of L-cysteine derivative 5P39 on LPS-induced acute lung injury in mice. Eur J Pharmacol 869:172893

    Article  Google Scholar 

  • Hong SY, Teng SW, Lin W, Wang CY, Lin HI (2020) Allogeneic human umbilical cord-derived mesenchymal stem cells reduce lipopolysaccharide-induced inflammation and acute lung injury. Am J Transl Res 12:6740–6750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janardhan KS, Charavaryamath C, Aulakh GK, Singh B (2012) Integrin beta3 is not critical for neutrophil recruitment in a mouse model of pneumococcal pneumonia. Cell Tissue Res 348:177–187

    Article  CAS  Google Scholar 

  • Kanai Y, Miura K, Uehara T, Amagai M, Takeda O, Tanuma S, Kurosawa Y (1993) Natural occurrence of Nuc in the sera of autoimmune-prone MRL/lpr mice. Biochem Biophys Res Commun 196:729–736

    Article  CAS  Google Scholar 

  • Kyriazopoulou E, Leventogiannis K, Norrby-Teglund A, Dimopoulos G, Pantazi A, Orfanos SE, Rovina N, Tsangaris I, Gkavogianni T, Botsa E, Chassiou E, Kotanidou A, Kontouli C, Chaloulis P, Velissaris D, Savva A, Cullberg JS, Akinosoglou K, Gogos C, Armaganidis A, Giamarellos-Bourboulis EJ, Hellenic Sepsis Study G (2017) Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis. BMC Med 15:172

    Article  Google Scholar 

  • Leivo-Korpela S, Lehtimaki L, Hamalainen M, Vuolteenaho K, Koobi L, Jarvenpaa R, Kankaanranta H, Saarelainen S, Moilanen E (2014) Adipokines NUCB2/nesfatin-1 and visfatin as novel inflammatory factors in chronic obstructive pulmonary disease. Mediators Inflamm 2014:232167

    Article  Google Scholar 

  • Levin J, Poore TE, Zauber NP, Oser RS (1970) Detection of endotoxin in the blood of patients with sepsis due to gram-negative bacteria. N Engl J Med 283:1313–1316

    Article  CAS  Google Scholar 

  • Lorenz E, Jones M, Wohlford-Lenane C, Meyer N, Frees KL, Arbour NC, Schwartz DA (2001) Genes other than TLR4 are involved in the response to inhaled LPS. Am J Physiol Lung Cell Mol Physiol 281(5):L1106–L1114

  • Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Investig 122:2731–2740

    Article  CAS  Google Scholar 

  • Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS (2019) Acute respiratory distress syndrome. Nat Rev Dis Primers 5:18

    Article  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379-399

    Article  CAS  Google Scholar 

  • Monzon ME, Forteza RM, Casalino-Matsuda SM (2011) MCP-1/CCR2B-dependent loop upregulates MUC5AC and MUC5B in human airway epithelium. Am J Physiol Lung Cell Mol Physiol 300:L204-215

    Article  CAS  Google Scholar 

  • Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  Google Scholar 

  • Ozsavci D, Ersahin M, Sener A, Ozakpinar OB, Toklu HZ, Akakin D, Sener G, Yegen BC (2011) The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery 68:1699–1708; discussion 1708

  • Potera RM, Cao M, Jordan LF, Hogg RT, Hook JS, Moreland JG (2019) Alveolar macrophage chemokine secretion mediates neutrophilic lung injury in Nox2-deficient mice. Inflammation 42:185–198

    Article  CAS  Google Scholar 

  • Prinz P, Goebel-Stengel M, Teuffel P, Rose M, Klapp BF, Stengel A (2016) Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochem Biophys Res Commun 470:521–527

    Article  CAS  Google Scholar 

  • Scotece M, Conde J, Abella V, Lopez V, Lago F, Pino J, Gomez-Reino JJ, Gualillo O (2014) NUCB2/nesfatin-1: a new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties, an in vitro study. J Orthop Res 32:653–660

    Article  CAS  Google Scholar 

  • Singh B, Pearce JW, Gamage LN, Janardhan K, Caldwell S (2004) Depletion of pulmonary intravascular macrophages inhibits acute lung inflammation. Am J Physiol: Lung Cell Mol Physiol 286:L363–L372

    CAS  Google Scholar 

  • Stengel A, Tache Y (2012) Gastric peptides and their regulation of hunger and satiety. Curr Gastroenterol Rep 14:480–488

    Article  Google Scholar 

  • Suratt BT, Parsons PE (2006) Mechanisms of acute lung injury/acute respiratory distress syndrome. Clin Chest Med 27:579–589; abstract viii

  • Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS (2012) The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 36:39–45

    Article  CAS  Google Scholar 

  • Togbe D, Schnyder-Candrian S, Schnyder B, Doz E, Noulin N, Janot L, Secher T, Gasse P, Lima C, Coelho FR, Vasseur V, Erard F, Ryffel B, Couillin I, Moser R (2007) Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol 88:387–391

    Article  CAS  Google Scholar 

  • Vrolyk V, Schneberger D, Le K, Wobeser BK, Singh B (2019) Mouse model to study pulmonary intravascular macrophage recruitment and lung inflammation in acute necrotizing pancreatitis. Cell Tissue Res 378:97–111

    Article  CAS  Google Scholar 

  • Walker F, Zhang HH, Matthews V, Weinstock J, Nice EC, Ernst M, Rose-John S, Burgess AW (2008) IL6/sIL6R complex contributes to emergency granulopoietic responses in G-CSF- and GM-CSF-deficient mice. Blood 111:3978–3985

    Article  CAS  Google Scholar 

  • Wang ZZ, Chen SC, Zou XB, Tian LL, Sui SH, Liu NZ (2020) Nesfatin-1 alleviates acute lung injury through reducing inflammation and oxidative stress via the regulation of HMGB1. Eur Rev Med Pharmacol Sci 24:5071–5081

    PubMed  Google Scholar 

  • World Health Organization (2017) The top 10 causes of death. Retrieved from http://www.who.int/mediacentre/factsheets/fs310/en/

  • Wright HL, Cross AL, Edwards SW, Moots RJ (2014) Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology (Oxford) 53:1321–1331

    Article  CAS  Google Scholar 

  • Yoshimura T, Imamichi T, Weiss JM, Sato M, Li L, Matsukawa A, Wang JM (2016) Induction of monocyte chemoattractant proteins in macrophages via the production of granulocyte/macrophage colony-stimulating factor by breast cancer cells. Front Immunol 7:2

    Article  Google Scholar 

  • Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40:519–535

  • Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L497–504

    Article  CAS  Google Scholar 

Download references

Funding

Baljit Singh’s laboratory is supported with a Discovery Grant from Natural Sciences and Engineering Research Council of Canada. Funding for the laboratory of Suraj Unniappan is supported by an open operating grant from the Canadian Institutes of Health Research, an establishment grant from the Saskatchewan Health Research Foundation, John Evans Leaders Fund from the Canada Foundation for Innovation and from the University of Saskatchewan through the Centennial Enhancement Chair in Comparative Endocrinology. Gurpreet Aulakh's work is supported through Sylvia Fedoruk Centre for Nuclear Innovation Chair in Nuclear Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh.

Ethics declarations

Ethics

All applicable national guidelines for the care and use of animals were followed and all the experiments were approved by the Animal Ethics Board of University of Saskatchewan.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, J., Aulakh, G.K., Unniappan, S. et al. Loss of Nucleobindin-2/Nesfatin-1 increases lipopolysaccharide-induced murine acute lung inflammation. Cell Tissue Res 385, 87–103 (2021). https://doi.org/10.1007/s00441-021-03435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03435-6

Keywords

Navigation