Skip to main content
Log in

Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The trochlear projection is unique among the cranial nerves in that it exits the midbrain dorsally to innervate the contralateral superior oblique muscle in all vertebrates. Trochlear as well as oculomotor motoneurons uniquely depend upon Phox2a and Wnt1, both of which are downstream of Lmx1b, though why trochlear motoneurons display such unusual projections is not fully known. We used Pax2-cre to drive expression of ectopically activated Smoothened (SmoM2) dorsally in the midbrain and anterior hindbrain. We documented the expansion of oculomotor and trochlear motoneurons using Phox2a as a specific marker at E9.5. We show that the initial expansion follows a demise of these neurons by E14.5. Furthermore, SmoM2 expression leads to a ventral exit and ipsilateral projection of trochlear motoneurons. We compare that data with Unc5c mutants that shows a variable ipsilateral number of trochlear fibers that exit dorsal. Our data suggest that Shh signaling is involved in trochlear motoneuron projections and that the deflected trochlear projections after SmoM2 expression is likely due to the dorsal expression of Gli1, which impedes the normal dorsal trajectory of these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bjorke B, Shoja-Taheri F, Kim M, Robinson GE, Fontelonga T, Kim K-T, Song M-R, Mastick GS (2016) Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling. Neural dev 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunet J-F, Pattyn A (2002) Phox2 genes—from patterning to connectivity. Curr Opin Genet Dev 12:435–440

    Article  CAS  PubMed  Google Scholar 

  • Burgess RW, Jucius TJ, Ackerman SL (2006) Motor axon guidance of the mammalian trochlear and phrenic nerves: Dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 26:5756–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chédotal A (2019) Roles of axon guidance molecules in neuronal wiring in the developing spinal cord. Nat Rev Neurosci 20:380–396

    Article  PubMed  Google Scholar 

  • Chédotal A, Richards LJ (2010) Wiring the brain: The biology of neuronal guidance. Cold Spring Harb Perspect Biol. 2:a001917

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Desai J, Miranda CJ, Duncan JS, Qiu W, Nugent AA, Kolpak AL, Wu CC, Drokhlyansky E, Delisle MM (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82:334–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colamarino SA, Tessier-Lavigne M (1995) The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81:621–629

    Article  CAS  PubMed  Google Scholar 

  • Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J 24:4392–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Andersson E, Hedlund E, Alekseenko Z, Coppola E, Panman L, Millonig JH, Brunet J-F, Ericson J, Perlmann T (2011) Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138:3399–3408

    Article  CAS  PubMed  Google Scholar 

  • Fogel JL, Chiang C, Huang X, Agarwala S (2008) Ventral specification and perturbed boundary formation in the mouse midbrain in the absence of Hedgehog signaling. Developmental dynamics: An official publication of the American Association of Anatomists 237:1359–1372

    Article  Google Scholar 

  • Fritzsch B, Duncan JS, Kersigo J, Gray B, Elliott KL (2016) Neuroanatomical tracing techniques in the ear: History, state of the art, and future developments. B. Sokolowski, Ed: Auditory and vestibular research: Methods and protocols, vol 1427. Springer Science+Business Media New York, pp 243–262

  • Fritzsch B, Elliott KL (2017) Evolution and development of the inner ear efferent system: Transforming a motor neuron population to connect to the most unusual motor protein via ancient nicotinic receptors. Front Cell Neurosci. 11:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Elliott KL, Glover JC (2017) Gaskell revisited: New insights into spinal autonomics necessitate a revised motor neuron nomenclature. Cell Tissue Res 370:195–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Elliott KL, Pavlinkova G, Duncan JS, Hansen MR, Kersigo JM (2019) Neuronal migration generates new populations of neurons that develop unique connections, physiological properties and pathologies. Front Cell Dev Biol. 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Nichols DH, Echelard Y, McMahon AP (1995) Development of midbrain and anterior hindbrain ocular motoneurons in normal and Wnt-1 knockout mice. J Neurobiol 27:457–469

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Northcutt RG (1993) Origin and migration of trochlear, oculomotor and abducent motor neurons in Petromyzon marinus L. Brain Res Dev Brain Res 74:122–126

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Sonntag R (1990) Oculomotor (N III) motoneurons can innervate the superior oblique muscle of Xenopus after larval trochlear (N IV) nerve surgery. Neurosci Lett 114:129–134

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Sonntag R, Dubuc R, Ohta Y, Grillner S (1990) Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol 294:491–506

    Article  CAS  PubMed  Google Scholar 

  • Gaskell WH (1898) On the Origin of Vertebrates, deduced from the Study of Ammocœtes: Part III. J Anat Physiol. 33:154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gegenbaur C (1888) The metamerism of the head and the vertebrate theory of the skull. Brain 10:559–565

    Article  Google Scholar 

  • Glasco DM, Pike W, Qu Y, Reustle L, Misra K, Di Bonito M, Studer M, Fritzsch B, Goffinet AM, Tissir F (2016) The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Developmental biology 417:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B (2018) Wilhelm His’ lasting insights into hindbrain and cranial ganglia development and evolution. Developmental biology

  • Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8:859

    Article  CAS  PubMed  Google Scholar 

  • Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alboran IM, Olson JM, Eisenman RN (2006) N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Can Res 66:8655–8661

    Article  CAS  Google Scholar 

  • Hatton WJ, Von Bartheld CS (1999) Analysis of cell death in the trochlear nucleus of the chick embryo: Calibration of the optical disector counting method reveals systematic bias. J Comp Neurol. 409:169–186

    Article  CAS  PubMed  Google Scholar 

  • Heine VM, Griveau A, Chapin C, Ballard PL, Chen JK, Rowitch DH (2011) A small-molecule smoothened agonist prevents glucocorticoid-induced neonatal cerebellar injury. Science translational medicine 3:105ra104

  • Hyman JM, Firestone AJ, Heine VM, Zhao Y, Ocasio CA, Han K, Sun M, Rack PG, Sinha S, Wu JJ, Solow-Cordero DE, Jiang J, Rowitch DH, Chen JK (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106:14132–14137

    Article  CAS  PubMed  Google Scholar 

  • Irving C, Malhas A, Guthrie S, Mason I (2002) Establishing the trochlear motor axon trajectory: Role of the isthmic organiser and Fgf8. Development 129:5389–5398

    Article  CAS  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE 5:e11661

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Bjorke B, Mastick GS (2019) Motor neuron migration and positioning mechanisms: New roles for guidance cues. Seminars in cell & developmental biology, vol 85. Elsevier, pp 78–83

  • Kim M, Fontelonga T, Roesener AP, Lee H, Gurung S, Mendonca PR, Mastick GS (2015) Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction. Developmental biology 399:68–79

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969

    Article  CAS  PubMed  Google Scholar 

  • Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3:979–985

    Article  CAS  PubMed  Google Scholar 

  • Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C (2002) Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418:979–983

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Can Res 66:10171–10178

    Article  CAS  Google Scholar 

  • Méneret A, Franz EA, Trouillard O, Oliver TC, Zagar Y, Robertson SP, Welniarz Q, Gardner RM, Gallea C, Srour M (2017) Mutations in the netrin-1 gene cause congenital mirror movements. J Clin Investig 127:3923–3936

    Article  PubMed  Google Scholar 

  • Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29:11377–11384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller M, Jabs N, Lork DE, Fritzsch B, Sander M (2003) Nkx6. 1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130:5815–5826

    Article  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Sonntag R, Fritzsch B (1991) Development of the amphibian oculomotor complex: Evidences for migration of oculomotor motoneurons across the midline. Anat Embryol 183:545–552

    Article  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (2007) The human central nervous system: A synopsis and atlas. Springer Science & Business Media

  • Ohyama T, Groves AK (2004) Generation of Pax2‐Cre mice by modification of a Pax2 bacterial artificial chromosome. genesis 38:195–199

  • Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275:66–80

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet J-F (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    Article  CAS  PubMed  Google Scholar 

  • Pombal MA, Megías M (2019) Development and functional organization of the cranial nerves in lampreys. Anat Rec 302:512–539

    Article  Google Scholar 

  • Prakash N, Puelles E, Freude K, Trumbach D, Omodei D, Di Salvio M, Sussel L, Ericson J, Sander M, Simeone A, Wurst W (2009) Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 136:2545–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles E, Martínez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain. The mouse nervous system. Elsevier, pp 337–359

  • Puelles L, Privat A (1977) Do oculomotor neuroblasts migrate across the midline in the fetal rat brain? Anat Embryol 150:187–206

    Article  CAS  Google Scholar 

  • Qu Y, Glasco DM, Zhou L, Sawant A, Ravni A, Fritzsch B, Damrau C, Murdoch JN, Evans S, Pfaff SL (2010) Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci 30:9392–9401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y, Miranda-Rottmann S, Ruggiu M, Park CY, Fak JJ, Zhong R, Duncan JS, Fabella BA, Junge HJ, Chen Z (2016) NOVA2-mediated RNA regulation is required for axonal pathfinding during development. Elife 5:

  • Schmidt H, Fritzsch B (2019) Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res 378:15–32

    Article  PubMed  Google Scholar 

  • Shoja-Taheri F, DeMarco A, Mastick GS (2015) Netrin1-DCC-mediated attraction guides post-crossing commissural axons in the hindbrain. J Neurosci 35:11707–11718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal GS, Ali MM, Tsai NT (1996) Dependence of cranial motor neuron formation on ventromedial brain stem. Int J Dev Neurosci 14:105–110

    Article  CAS  PubMed  Google Scholar 

  • Sonntag R, Fritzsch B (1987) The development of the amphibian trochlear nucleus. An HRP study Neurosci Lett 77:143–148

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Fritzsch B, Glover JC (2014) Connecting ears to eye muscles: Evolution of a ‘simple’ reflex arc. Brain Behav Evol 83:162–175

    Article  PubMed  Google Scholar 

  • Tonniges J, Hansen M, Duncan J, Bassett M, Fritzsch B, Gray B, Easwaran A, Nichols MG (2010) Photo-and bio-physical characterization of novel violet and near-infrared lipophilic fluorophores for neuronal tracing. J Microsc 239:117–134

    CAS  PubMed  Google Scholar 

  • Varela-Echavarria A, Tucker A, Puschel AW, Guthrie S (1997) Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18:193–207

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding M (2018) Robo and Ror function in a common receptor complex to regulate Wnt-mediated neurite outgrowth in Caenorhabditis elegans. Proc Natl Acad Sci 115:E2254–E2263

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Toyoda R, Nakamura H (2004) Navigation of trochlear motor axons along the midbrain-hindbrain boundary by neuropilin 2. Development 131:681–692

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Paxinos G, Puelles L (2012) The mouse nervous system. Academic Press

  • Watson C, Shimogori T, Puelles L (2017) Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol. 525:2782–2799

    Article  CAS  PubMed  Google Scholar 

  • Whitman MC, Engle EC (2017) Ocular congenital cranial dysinnervation disorders (CCDDs): Insights into axon growth and guidance. Hum Mol Genet 26:R37–R44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Bassuk AG, Stricker S, Fritzsch B (2014) Prickle1 is necessary for the caudal migration of murine facial branchiomotor neurons. Cell Tissue Res 357:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilles E, Kretschmann H, Wingert F (1974) Biometric analysis of the number of neurons in the nucl. n. oculomotorii and nucl. n. trochlearis in an ontogenetic study on Tupaia belangeri. Verhandlungen der Anatomischen Gesellschaft 68:399

Download references

Acknowledgments

We would like to thank Drs. T. Ohyama and A. Groves for providing the Pax2-cre mice, Dr. Susan L Ackerman for providing the Unc5c mutant mice, Dr. David H Rowitch for giving us the SmoM2 construct, Dr. J-F. Brunet for the Phox2a probe, and Dr. A. McMahon for the Gli1 probe. We appreciate the collaboration with Dr. Ning Pan on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, I., Kersigo, J., Elliott, K.L. et al. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res 384, 59–72 (2021). https://doi.org/10.1007/s00441-020-03352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03352-0

Keywords

Navigation