Skip to main content
Log in

Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity?

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 07 May 2019

This article has been updated

Abstract

Piezo channels play fundamental roles in many physiological processes. Their presence and functional role in the enteric nervous system is still not known. We hypothesize that they play a role in mechanotransduction in enteric neurons. Our aims are to quantify the presence of both Piezo1 and 2 in enteric neurons throughout the gastrointestinal tract using immunohistochemistry and analyze their function(s) using neuroimaging techniques and pharmacological investigations. In order to perform a systematic and comparative study, we performed our experiments in gastrointestinal tissue from guinea pigs, mice and humans. Piezo1 (20–70%) is expressed by both enteric neuronal cell bodies and fibers in the myenteric and submucosal plexi of all the species investigated. Generally, Piezo1 expressing somata are more numerous in the submucosal plexus (50–80%) than in the myenteric plexus (15–35%) apart from the stomach where Piezo1 is expressed in up to 60% of cell bodies. Myenteric Piezo1 neurons mainly (60–100%) but not exclusively, also express nitric oxide synthase, a minority express choline acetyltransferase. In the submucosal plexus, Piezo1 neurons co-express vasoactive intestinal peptide (40–90%). Conversely, expression of Piezo2 is extremely rare in the somata of enteric neurons and is present in few neurites. In functional experiments, 38–76% of the mechanosensitive neurons expressed Piezo1 channels. Statistical analysis showed a positive significant correlation between mechanosensitive and Piezo1 positive neurons. However, pharmacological experiments using an activator and an inhibitor of Piezo channels did not demonstrate changes in mechanotransduction. A major role of Piezo1 in the mechanosensitivity of enteric neurons can be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 07 May 2019

    The Authors regret forgetting in the original version of this article to mention that this work was also supported by the US National Institute of Health (NIH) (1OT2OD024899-01).

References

  • Alcaino C, Farrugia G, Beyder A (2017) Mechanosensitive Piezo channels in the gastrointestinal tract. Curr Top Membr 79:219–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae C, Sachs F, Gottlieb PA (2011) The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry (Mosc) 50:6295–6300

    Article  CAS  Google Scholar 

  • Bagriantsev SN, Gracheva EO, Gallagher PG (2014) Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 289:31673–31681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borbiro I, Badheka D, Rohacs T (2015) Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal 8:ra15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhner S, Braak B, Li Q, Kugler EM, Klooker T, Wouters M, Donovan J, Vignali S, Mazzuoli-Weber G, Grundy D, Boeckxstaens G, Schemann M (2014) Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity. Exp Physiol 99:1299–1311

    Article  PubMed  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai KM, Zembowicz A, Sessa WC, Vane JR (1991) Nitroxergic nerves mediate vagally induced relaxation in the isolated stomach of the guinea pig. Proc Natl Acad Sci U S A 88:11490–11494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN (2007) High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2:e515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien C-B, Morcos PA, Rosenblatt J (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484:546–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C (2014) Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb PA, Sachs F (2012) Piezo1: properties of a cation selective mechanical channel. Channels Austin Tex 6:214–219

    Article  CAS  Google Scholar 

  • Hennig GW, Brookes SJ, Costa M (1997) Excitatory and inhibitory motor reflexes in the isolated guinea-pig stomach. J Physiol 501(Pt 1):197–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda R, Gu JG (2014) Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles. Neurosci Lett 583:210–215

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Li J, Wang Y, Ye R, Feng X, Jing Z, Zhao Z (2015) Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod 85:87–94

    Article  PubMed  Google Scholar 

  • Kugler EM, Michel K, Kirchenbüchler D, Dreissen G, Csiszár A, Merkel R, Schemann M, Mazzuoli-Weber G (2018) Sensitivity to strain and shear stress of isolated mechanosensitive enteric neurons. Neuroscience 372:213–224

    Article  CAS  PubMed  Google Scholar 

  • Kugler EM, Michel K, Zeller F, Demir IE, Ceyan GO, Schemann M, Mazzuoli-Weber G (2015) Mechanical stress activates neurites and somata of myenteric neurons. Front Cell Neurosci 9:342

    PubMed  PubMed Central  Google Scholar 

  • Kummer W, Fischer A, Mundel P, Mayer B, Hoba B, Philippin B, Preissler U (1992) Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the guinea-pig. Neuroreport 3:653–655

    Article  CAS  PubMed  Google Scholar 

  • Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Michel K, Annahazi A, Demir IE, Ceyhan GO, Zeller F, Komorowski L, Stöcker W, Beyak MJ, Grundy D, Farrugia G, De Giorgio R, Schemann M (2016) Anti-Hu antibodies activate enteric and sensory neurons. Sci Rep 6:38216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6:8329

    Article  CAS  PubMed  Google Scholar 

  • Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, Kurt B, Patel A, Honoré E, Demolombe S (2016) Piezo1-dependent regulation of urinary osmolarity. Pflugers Arch 468:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Mazzuoli G, Schemann M (2009) Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J Physiol 587:4681–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzuoli G, Schemann M (2012) Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One 7:e39887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzuoli-Weber G, Schemann M (2015a) Mechanosensitivity in the enteric nervous system. Front Cell Neurosci 9:408

    PubMed  PubMed Central  Google Scholar 

  • Mazzuoli-Weber G, Schemann M (2015b) Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front Cell Neurosci 9:430

    PubMed  PubMed Central  Google Scholar 

  • McHugh BJ, Buttery R, Lad Y, Banks S, Haslett C, Sethi T (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J Cell Sci 123:51–61

    Article  PubMed  Google Scholar 

  • Michel K, Michaelis M, Mazzuoli G, Mueller K, Vanden Berghe P, Schemann M (2011) Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge. J Physiol 589:5941–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y, Suzuki Y, Koizumi S, Takeda M, Tominaga M (2014) Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem 289:16565–16575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroni M, Servin-Vences MR, Fleischer R, Sánchez-Carranza O, Lewin GR (2018) Voltage gating of mechanosensitive PIEZO channels. Nat Commun 9:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunlist M, Peters S, Schemann M (1999) Multisite optical recording of excitability in the enteric nervous system. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 11:393–402

    Article  CAS  Google Scholar 

  • Paton WD, Vane JR (1963) Analysis of the responses of the isolated stomach to electrical stimulation and to drugs. J Physiol 165:10–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honoré E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfannkuche H, Reiche D, Sann H, Schemann M (1998) Different subpopulations of cholinergic and nitrergic myenteric neurones project to mucosa and circular muscle of the guinea-pig gastric fundus. Cell Tissue Res 292:463–475

    Article  CAS  PubMed  Google Scholar 

  • Ranade SS, Qiu Z, Woo S-H, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li Y-SJ, Chien S, Patapoutian A (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111:10347–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ, Odell G, Arcangeli A, Clare JJ, Alagón A, de la Vega RCR, Possani LD, Wanke E (2010) Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem 285:4130–4142

    Article  CAS  PubMed  Google Scholar 

  • Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97:738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH, Petrassi HM, Schumacher AM, Montal M, Bandell M, Patapoutian A (2015) Chemical activation of the mechanotransduction channel Piezo1. eLife 4:e07369

    Article  CAS  PubMed Central  Google Scholar 

  • Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A (2017) Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 595:79–91

    Article  CAS  PubMed  Google Scholar 

  • Weber E, Neunlist M, Schemann M, Frieling T (2001) Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J Physiol 536:741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-H, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA, Patapoutian A (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18:1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-H, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z, Petrus M, Miyamoto T, Reddy K, Lumpkin EA, Stucky CL, Patapoutian A (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lewis AH, Grandl J (2017) Touch, tension, and transduction – the function and regulation of Piezo ion channels. Trends Biochem Sci 42:57–71

    Article  CAS  PubMed  Google Scholar 

  • Yang X-N, Lu Y-P, Liu J-J, Huang J-K, Liu Y-P, Xiao C-X, Jazag A, Ren J-L, Guleng B (2014) Piezo1 is as a novel trefoil factor family 1 binding protein that promotes gastric cancer cell mobility in vitro. Dig Dis Sci 59:1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Yang H, Li K, Lei X, Xu C (2016) The potential role of Piezo2 in the mediation of visceral sensation. Neurosci Lett 630:158–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Birgit Kuch for her technical assistance, the hours she spent performing immunohistochemical studies and the beautiful pictures she produced.

Funding

This work was supported by the German Research Foundation DFG (MA-5202/1-1 and 1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Mazzuoli-Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzuoli-Weber, G., Kugler, E.M., Bühler, C.I. et al. Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity?. Cell Tissue Res 375, 605–618 (2019). https://doi.org/10.1007/s00441-018-2926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2926-7

Keywords

Navigation