Skip to main content

Advertisement

Log in

Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates and for maintaining stem cell homeostasis, which includes self-renewal, cell differentiation and somatic reprogramming. Loss of self-renewal capacity and pluripotency is a major obstacle to stem cell-based therapies. It has been reported that autophagy regulates stem cells under biological stimuli, starvation, hypoxia, generation of reactive oxygen species (ROS) and cellular senescence. On the one hand, autophagy is shown to play roles in self-renewal by co-function with the ubiquitin-proteasome system (UPS) to promote pluripotency-associated proteins (NANOG, OCT4 and SOX2) in human embryonic stem cells (hESCs). On the other hand, autophagy activity acts as cell reprogramming processes that play an important role for clearance fate determination and upregulates neural and cardiac differentiation. Deregulation of autophagy triggers protein disorders such as neurodegenerative cardiac/muscle diseases and cancer. Therefore, understanding of the roles of the autophagy in stem cell renewal and differentiation may benefit therapeutic development for a range of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aymard E, Barruche V, Naves T, Bordes S, Closs B, Verdier M, Ratinaud MH (2011) Autophagy in human keratinocytes: an early step of the differentiation? Exp Dermatol 20:263–268

    Article  CAS  Google Scholar 

  • Bayod S, Del Valle J, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, Escorihuela RM, Pallas M (2011) Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol (1985) 111:1380–1390

    Article  CAS  Google Scholar 

  • Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A 94:10432–10437

    Article  CAS  Google Scholar 

  • Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639

    Article  CAS  Google Scholar 

  • Chen T, Shen L, Yu J, Wan H, Guo A, Chen J (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911

    Article  CAS  Google Scholar 

  • Chen Y, Zhao L, Tian X, Liu T, Zhong J, Sun L, Liu J (2013) Autophagy induced by the withdrawal of mitogens promotes neurite extension in rat neural stem cells. J Biochem Mol Toxicol 27:351–356

    Article  CAS  Google Scholar 

  • Chin TY, Kao CH, Wang HY, Huang WP, Ma KH, Chueh SH (2010) Inhibition of the mammalian target of rapamycin promotes cyclic AMP-induced differentiation of NG108-15 cells. Autophagy 6:1139–1156

    Article  CAS  Google Scholar 

  • Chung KM, Yu SW (2013) Interplay between autophagy and programmed cell death in mammalian neural stem cells. BMB Rep 46:383–390

    Article  CAS  Google Scholar 

  • Domínguez L, Schlosser G, S S (2015) Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. Neuroscience 290:61–79

    Article  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  Google Scholar 

  • Fang B, Xiao H (2014) Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun 448:443–447

    Article  CAS  Google Scholar 

  • Fidaleo M, Cavallucci V, Pani G (2017) Nutrients, neurogenesis and brain ageing: from disease mechanisms to therapeutic opportunities. Biochem Pharmacol

  • Filas BA, Shui YB, Beebe DC (2013) Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci 54:6549–6559

    Article  CAS  Google Scholar 

  • Fishwick KJ, Li RA, Halley P, Deng P, Storey KG (2010) Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 338:215–225

    Article  CAS  Google Scholar 

  • Garza-Lombo C, Gonsebatt ME (2016) Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci 10:157

    Article  Google Scholar 

  • Gong J, Gu H, Zhao L, Wang L, Liu P, Wang F, Xu H, Zhao T (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death Dis 9:38

    Article  Google Scholar 

  • Guan J-L, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, wang C, Wolvetang E, Martin Av, Zhang J (2013) Autophagy in stem cells. Autophagy

  • Guo D, Teng Q, Ji C (2011) NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 52:1200–1210

    Article  CAS  Google Scholar 

  • Ha S, Jeong SH, Yi K, Chung KM, Hong CJ, Kim SW, Kim EK, Yu SW (2017) Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 292:13795–13808

    Article  CAS  Google Scholar 

  • Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, G L (2017) From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biom J 40:9–22

    Google Scholar 

  • He J, Kang L, Wu T, Zhang J, Wang H, H G (2012) An elaborate regulation of mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21:2630–2641

    Article  CAS  Google Scholar 

  • Hurley JH, BA S (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300–311

    Article  CAS  Google Scholar 

  • Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    Article  CAS  Google Scholar 

  • Jang JE, Eom JI, Jeung HK, Cheong JW, Lee JY, Kim JS, Min YH (2017) Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells. Autophagy 13:761–762

    Article  CAS  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715

    Article  CAS  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, DH K (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  Google Scholar 

  • Ka M, Condorelli G, Woodgett JR, Kim WY (2014) mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development 141:4076–4086

    Article  CAS  Google Scholar 

  • Kempermann G (2002) Neuronal stem cells and adult neurogenesis. Ernst Schering Res Found Workshop:17–28

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  Google Scholar 

  • Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63:761–773

    Article  CAS  Google Scholar 

  • Kim T, Vemuganti R (2017) Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cerebral Blood Flow Metab

  • Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jaattela M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294

    Article  Google Scholar 

  • Komatsu M, Kominami E, Tanaka K (2006) Autophagy and neurodegeneration. Autophagy 2:315–317

    Article  CAS  Google Scholar 

  • Larsson N-G, Institutet MGMK (2016) Scientific background discoveries of mechanisms for autophagy

  • Lee EJ, C T (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7:689–695

    Article  CAS  Google Scholar 

  • Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5:e15394

    Article  Google Scholar 

  • Lee Y, Jung J, Cho KJ, Lee S-K, Park J-W, Oh I-H, Kim GJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem

  • Liu H, He Z, von Rutte T, Yousefi S, Hunger R (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med

  • Liu M, Guan Z, Shen Q, Flinter F, Domínguez L, Ahn JW, Collier DA, O'Brien T (2016) S S. Ulk4 regulates neural stem cell pool stem cell 34:2318–2331

    CAS  Google Scholar 

  • Liu M, Xu P, O'Brien T, S S (2017) Multiple roles of Ulk4 in neurogenesis and brain function. In: Neurogenesis (Austin) 4

    Google Scholar 

  • Lopez NM, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med Biol

  • Madill M, McDonagh K, Ma J, Vajda A, McLoughlin P, O'Brien T, Hardiman O (2017) Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. In: Mil brain 10

    Google Scholar 

  • Maloverjan A, Piirsoo M, Kasak L, Peil L, Østerlund T, P K (2010a) Dual function of UNC-51-like kinase 3 (Ulk3) in the sonic hedgehog signaling pathway. J Biol Chem 285:30079–30090

    Article  CAS  Google Scholar 

  • Maloverjan A, Piirsoo M, Michelson P, Kogerman P, T O (2010b) Identification of a novel serine/threonine kinase ULK3 as a positive regulator of hedgehog pathway. Exp Cell Res 316:627–637

    Article  CAS  Google Scholar 

  • McAlpine F, Williamson LE, Tooze SA, EY C (2013) Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361–373

    Article  CAS  Google Scholar 

  • McCarty MN, Klein PS (2017) Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. Plos one

  • McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Z Y (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. In: PLoS Genet 10

    Google Scholar 

  • Menendez J, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    Article  CAS  Google Scholar 

  • Ojha R, Bhattacharyya S, Singh SK (2015) Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. BioResearch 4.1:

  • Pan H, Cai N, Li M, Liu G-H, Belmonte JCl (2013a) Autophagic control of cell 'stemness'. EMBO Mol med

  • Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013b) Autophagic control of cell ‘stemness’. EMBO Mol Med 5:327–331

    Article  CAS  Google Scholar 

  • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    Article  CAS  Google Scholar 

  • Raman L, Kong X, Kernie SG (2013) Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice. Neurosci Lett 541:9–14

    Article  CAS  Google Scholar 

  • Rodolfo C, Bartolomeo SD, Cecconi F (2016) Autophagy in stem and progenitor cells. Cellular and Molecular Life Sciences

  • Sadler TW (2005) Embryology of neural tube development. Am J Med Genet C Semin Med Genet 135C:2–8

    Article  CAS  Google Scholar 

  • Salemi S, Fey M, Yousefi S, Constantinescu MA, Simon H-U (2012a) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Research

  • Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012b) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435

    Article  CAS  Google Scholar 

  • Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. Cell Biol Dis

  • Sbrana FV, Columbaro M, Cortini M, Milito AD, Avnet S, Baldini N, Perut F (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev and Rep

  • Sekito T, Kawamata T, Ichikawa R, Suzuki K, Y O (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14:525–538

    Article  CAS  Google Scholar 

  • Shin JY, Park hJ, Kim hN, Oh sH, Bae J-s (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy

  • Song J, Christian KM, Ming GL, Song H (2012) Modification of hippocampal circuitry by adult neurogenesis. Dev Neurobiol 72:1032–1043

    Article  Google Scholar 

  • Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O'Brien T, Shen S (2016) Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 7:166

    Article  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  Google Scholar 

  • Takahashi T, Shimizu K, Shimazaki K, Toda H, Nibuya M (2014) Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res 1592:113–123

    Article  CAS  Google Scholar 

  • Thoresen SB, Pedersen NM, Liestol K, H S (2010) A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res 316:3368–3378

    Article  CAS  Google Scholar 

  • Tomoda T, Kim JH, Zhan C, ME H (2004) Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18:541–558

    Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  Google Scholar 

  • Urban N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8:396

    Article  Google Scholar 

  • Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199

    Article  CAS  Google Scholar 

  • Wang S, Xia P, Ye B, Huang G, Liu J, Z F (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625

    Article  CAS  Google Scholar 

  • Wang S, Xia P, Fan Z, Rehm M (2015) Autophagy and cell reprogramming. Cell Mol Life Sci

    Google Scholar 

  • Westerholz S, de Lima AD, Voigt T (2013) Thyroid hormone-dependent development of early cortical networks: temporal specificity and the contribution of trkB and mTOR pathways. Front Cell Neurosci 7:121

    Article  Google Scholar 

  • Xi Y, Dhaliwal JS, Ceizar M, Vaculik M, Kumar KL, Lagace DC (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127

    Article  CAS  Google Scholar 

  • Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896

    Article  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  Google Scholar 

  • Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403

    Article  CAS  Google Scholar 

  • Yun HC, Kyu MH, Dong KK, Joon SL, Sang HL, Kyeng WC, Jungho K, Yong MH (2013) Autophagy regulates homeostasis of pluripotency associated proteins in hESCs. Stem Cells Dev

  • Zeng M, Zhou J-N (2008a) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal

  • Zeng M, Zhou JN (2008b) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20:659–665

    Article  CAS  Google Scholar 

  • Zhang Z, Yang M, Wang Y, Wang L, Jin Z, Ding L, Zhang L, Zhang L, Jiang W, Gao G, Yang J, Lu B, Cao F, Hu T (2016) Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway. Cell Biol Int 40:671–685

    Article  CAS  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  Google Scholar 

  • Zhao Y, Huang Q, Yang J, Lou M, Wang A, Dong J, Qin Z, Zhang T (2010) Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res 1313:250–258

    Article  CAS  Google Scholar 

  • Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, Bai Y (2017) Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics 17

    Article  Google Scholar 

  • Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, Fu YJ, Matuszak EA, Weiss HL, Chait BT, QJ W (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021–26037

    Article  CAS  Google Scholar 

  • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Z Y (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  CAS  Google Scholar 

  • Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, F W (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A 104:5842–5847

    Article  CAS  Google Scholar 

  • Zhoua J, Sua P, Wanga L, Chena J, Zimmermannc M, Genbacevd O, Afonjae O, Hornec MC, Tanakab T, Duang E, Fisherd SJ, Liaoh J, Chena J, Wanga F (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. PNAS 106

Download references

Acknowledgements

PN was supported by the Suranaree University of Technology (SUT), the Office of the Higher Education Commission under the NRU project of Thailand. AS was supported by a grant from the Chulabhorn International College of Medicine Research Fund 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinya Noisa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotthibundhu, A., Promjuntuek, W., Liu, M. et al. Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 374, 205–216 (2018). https://doi.org/10.1007/s00441-018-2829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2829-7

Keywords

Navigation