Skip to main content

Advertisement

Log in

Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are unique precursor cells characterized by active self-renewal and differentiation potential. These cells offer the advantages of ease of isolation and limited ethical issues as a resource and represent a promising cell therapy for neurodegenerative diseases. However, replicative senescence during cell culture as well as low efficiency of cell migration and differentiation after transplantation are major obstacles. In our previous study, we found that FOXQ1 binds directly to the SIRT1 promoter to regulate cellular senescence and also promotes cell proliferation and migration in many tumor cell lines. Currently, little is known about the effects of FOXQ1 on normal somatic cells. Therefore, we examine the effects of FOXQ1 on senescence and migration of MSCs. Lentiviral vector-mediated overexpression of FOXQ1 in human umbilical cord mesenchymal stem cells (hUC-MSCs) resulted in enhanced cell proliferation and viability. Furthermore, the expression of proteins and markers positively associated with senescence (p16, p21, p53) was reduced, whereas expression of proteins negatively associated with senescence (SIRT1, PCNA) was promoted. Following transplantation of hUC-MSCs overexpressing FOXQ1 in an animal model of Alzheimer’s disease (APPV717I transgenic mice) resulted in amelioration of the effects of Alzheimer’s disease (AD) on cognitive function and pathological senescence accompanied the increased numbers of hUC-MSCs in the AD brain. In conclusion, FOXQ1 overexpression promotes anti-senescence and migration of hUC-MSCs in vitro and in vivo. These findings also suggest that this strategy may contribute to optimization of the efficiency of stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abba M, Patil N, Rasheed K, Nelson LD, Mudduluru G, Leupold JH, Allgayer H (2013) Unraveling the role of FOXQ1 in colorectal cancer metastasis. Mol Cancer Res: MCR 11:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Abeta42-induced tau toxicity. PLoS Genet 12:e1005917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315:3598–3610

    Article  PubMed  CAS  Google Scholar 

  • Benayoun BA, Caburet S, Veitia RA (2011) Forkhead transcription factors: key players in health and disease. Trends in genetics: TIG 27:224–232

    Article  PubMed  CAS  Google Scholar 

  • Chen TS, Lim SK (2013) Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells. Methods Mol Biol 1024:69–86

    Article  PubMed  CAS  Google Scholar 

  • Conover JC, Todd KL (2016) Development and aging of a brain neural stem cell niche. Exp Gerontol 94:9–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noel D (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7:16214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Lv P, Xing Q, Qu R, Yao N, Yang B, Guan F (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301

    Article  PubMed  CAS  Google Scholar 

  • Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z (2017) Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif. https://doi.org/10.1111/cpr.12337

  • Ellis SJ, Tanentzapf G (2010) Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res 339:121–130

    Article  PubMed  CAS  Google Scholar 

  • Fandel TM, Trivedi A, Nicholas CR, Zhang H, Chen J, Martinez AF, Noble-Haeusslein LJ, Kriegstein AR (2016) Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell 19:544–557

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Xu L, Ni S, Gu J, Zhu H, Wang H, Zhang S, Zhang W, Huang J (2014) Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncotarget 5:9689–9702

    PubMed  PubMed Central  Google Scholar 

  • Gatta E, Lefebvre T, Gaetani S, dos Santos M, Marrocco J, Mir AM, Cassano T, Maccari S, Nicoletti F, Mairesse J (2016) Evidence for an imbalance between tau O-GlcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer’s disease. Pharmacol Res 105:186–197

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, Hu J, Sun X (2016) Changes in mesenchymal stem cells following long-term culture in vitro. Mol Med Rep 13:5207–5215

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Jiang J, Xia Y, Yue X, Yan M, Tao T, Cao X, Da Z, Liu H, Liu H, Miao Y, Li L, Wang Z (2013) p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice. Exp Clin Endocrinol Diabetes : Off J German Soc Endocrinol German Diabetes Assoc 121:607–613

    Article  CAS  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua J, He ZG, Qian DH, Lin SP, Gong J, Meng HB, Yang TS, Sun W, Xu B, Zhou B, Song ZS (2014) Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol 7:3580–3595

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CE, Hu FW, Yu CH, Tsai LL, Lee TH, Chou MY, Yu CC (2014) Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. Int J Mol Sci 15:18623–18639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaneda H, Arao T, Tanaka K, Tamura D, Aomatsu K, Kudo K, Sakai K, De Velasco MA, Matsumoto K, Fujita Y, Yamada Y, Tsurutani J, Okamoto I, Nakagawa K, Nishio K (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70:2053–2063

    Article  PubMed  CAS  Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poon LW, Jazwinski SM (2012) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13:119–131

    Article  PubMed  CAS  Google Scholar 

  • Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang Y, Yao Z, Li S, Yin Z, Xu M (2016) Forkhead box Q1: a key player in the pathogenesis of tumors (review). Int J Oncol 49:51–58

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li J, Li P, Bai M, Guo Y, Han M, Zhang F, Ahmed R, Jin S (2016) Stem cell transplantation for the treatment of liver diseases: a systematic review and meta-analysis. Turk J Gastroenterol: Off J Turk Soc Gastroenterol 27:499–508

    Article  Google Scholar 

  • Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, Willerson JT (2013) Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 113:902–914

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Speyer CL, Zhang B, Zhao Y, Chen W, Gorski DH, Miller FR, Wu G (2015) PDGFRalpha and beta play critical roles in mediating Foxq1-driven breast cancer stemness and chemoresistance. Cancer Res 75:584–593

    Article  PubMed  CAS  Google Scholar 

  • Moshaverinia A, Chen C, Xu X, Ansari S, Zadeh HH, Schricker SR, Paine ML, Moradian-Oldak J, Khademhosseini A, Snead ML, Shi S (2015) Regulation of the stem cell-host immune system interplay using hydrogel coencapsulation system with an anti-inflammatory drug. Adv Funct Mater 25:2296–2307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naaldijk Y, Jager C, Fabian C, Leovsky C, Bluher A, Rudolph L, Hinze A, Stolzing A (2016) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathol Appl Neurobiol 43:299–314

    Article  PubMed  CAS  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690

    Article  PubMed  CAS  Google Scholar 

  • Oh SH, Kim HN, Park HJ, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transplant 24:1097–1109

    Article  PubMed  Google Scholar 

  • Pei Y, Wang P, Liu H, He F, Ming L (2015) FOXQ1 promotes esophageal cancer proliferation and metastasis by negatively modulating CDH1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 74:89-94

  • Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E (2015) High OCT4 and low p16(INK4A) expressions determine in vitro lifespan of mesenchymal stem cells. Stem Cells Int 2015:369828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q (2011) FOXQ1 regulates epithelial–mesenchymal transition in human cancers. Cancer Res 71:3076–3086

    Article  PubMed  CAS  Google Scholar 

  • Rajput BS, Chakrabarti SK, Dongare VS, Ramirez CM, Deb KD (2015) Human umbilical cord mesenchymal stem cells in the treatment of Duchenne muscular dystrophy: safety and feasibility study in India. J Stem Cells 10:141–156

    PubMed  CAS  Google Scholar 

  • Ruddy RM, Morshead CM (2017) Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res. https://doi.org/10.1007/s00441-017-2658-0

  • Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, He J, Wu W, So KF, Pan G, Pei D (2013) Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods 10:84–89

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Lv C, Zhang T, Liu J, Yang J, Guan F, Hong T (2017) FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death Dis 8:e2946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, Shan F, Meng Y, Yuan Z (2016a) Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Human Vaccines Immunotherapeutics 12:85–96

    Article  PubMed  Google Scholar 

  • Wang SC (2014) PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci 35:178–186

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ma S, Meng N, Yao N, Zhang K, Li Q, Zhang Y, Xing Q, Han K, Song J, Yang B, Guan F (2016b) Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Mol Cells 39:418–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, Shang X, Nie Y, Wu K (2014) Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology 59:958–973

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Xie Z, Wei L, Yang H, Yang S, Zhu Z, Wang P, Zhao C, Bi J (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. Stem Cell Res Ther 4:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, Azmi MA, Chua KH, Wan Safwani WK (2015) Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 5:9596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G (2011) Forkhead transcription factor foxq1 promotes epithelial–mesenchymal transition and breast cancer metastasis. Cancer Res 71:1292–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Li W, Dai S, Tai X, Jia J, Guo X (2015) FOXQ1 is overexpressed in laryngeal carcinoma and affects cell growth, cell cycle progression and cell invasion. Oncol Lett 10:2499–2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, Yang J, Yang A, Hao X (2016) Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep 36:2349–2356

    Article  PubMed  CAS  Google Scholar 

  • Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F (2016) Development of a Xeno-free feeder-layer system from human umbilical cord mesenchymal stem cells for prolonged expansion of human induced pluripotent stem cells in culture. PLoS One 11:e0149023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

All plasmids (Framework plasmid pHBLV-puro and packaging plasmids psPAX2, pMD2.G) were gifts from the Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology Professor Tanjun Tong.

This work was supported by the Natural Science Foundation of China (NSFC 81471306 and 81501200), China Postdoctoral Science Foundation (2015M572122), Innovative Research Team in Science and Technology of the University of Henan Province (15IRTSTHN022), the Plan for Scientific Innovation Talent of Henan Province (154200510008), the Key Research Project of Higher Education of Henan Province (17A310012) and the Research Fund for the Doctoral Program of Higher Education of China (20114101110004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Ma or Fangxia Guan.

Ethics declarations

Author Disclosure Statement.

The authors declare that they have no conflict of interest.

Additional information

T.Z. and P.W. equally contributed to this work.

FX.G. and SS.M. jointly supervised this work.

FX.G. is the first corresponding author.

Appendix

Appendix

Fig. 9
figure 9

Verification of the effect of FOXQ1 overexpression in P3 hUC-MSCs. a Relative FOXQ1 protein expression by western blotting. b Densitometry analysis of FOXQ1 protein levels. c Relative FOXQ1 mRNA expression by qRT-PCR, #P < 0.01, versus pHBLV (vector) group

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, P., Liu, Y. et al. Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 373, 379–393 (2018). https://doi.org/10.1007/s00441-018-2815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2815-0

Keywords

Navigation